Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Iron center, substrate recognition and mechanism of peptide deformylase

Abstract

Eubacterial proteins are synthesized with a formyl group at the N-terminus which is hydrolytically removed from the nascent chain by the mononuclear iron enzyme peptide deformylase. Catalytic efficiency strongly depends on the identity of the bound metal. We have determined by X-ray crystallography the Fe 2+ , Ni 2+ and Zn 2+ forms of the Escherichia coli enzyme and a structure in complex with the reaction product Met-Ala-Ser. The structure of the complex, with the tripeptide bound at the active site, suggests detailed models for the mechanism of substrate recognition and catalysis. Differences of the protein structures due to the identity of the bound metal are extremely small and account only for the observation that Zn 2+ binds more tightly than Fe 2+ or Ni 2+ . The striking loss of catalytic activity of the Zn 2+ form could be caused by its reluctance to change between tetrahedral and five-fold metal coordination believed to occur during catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Omit map of Met-Ala-Ser in the PDF–Ni/MAS structure contoured at 1σ .
Figure 2: Peptide deformylase in complex with the reaction product Met-Ala-Ser.
Figure 3

Similar content being viewed by others

References

  1. Kozak, M. Microbiol. Rev. 47, 1–45 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams, J.M. J. Mol. Biol. 33, 571–589 (1968).

    Article  CAS  Google Scholar 

  3. Ball, L. A. & Kaesberg, P. J. Mol. Biol. 79, 531–537 (1973).

    Article  CAS  Google Scholar 

  4. Mazel, D., Pochet, S. & Marlière, P. EMBO J. 13, 914– 923 (1994).

    Article  CAS  Google Scholar 

  5. Rajagopalan, P.T.R., Yu, X.C. & Pei, D. J. Am. Chem. Soc. 119, 12418–12419 (1997).

    Article  CAS  Google Scholar 

  6. Groche, D. et al. Biochem. Biophys. Res. Commun. 246, 342 –346 (1998).

    Article  CAS  Google Scholar 

  7. Groche, D. Ph.D. thesis, Universität Heidelberg. Charakterisierung des Eisenzentrums und des Katalysemechanismus von Peptid-Deformylase aus Escherichia coli (1995).

  8. Meinnel, T., Blanquet, S. & Dardel, F. J. Mol. Biol. 262, 375– 386 (1996).

    Article  CAS  Google Scholar 

  9. Chan, M.K. et al. Biochemistry 36, 13904– 13909 (1997).

    Article  CAS  Google Scholar 

  10. Meinnel, T. & Blanquet, S. J. Bacteriol. 175, 7737–7740 (1993).

    Article  CAS  Google Scholar 

  11. Vallee, B.L. & Auld, D.S. Biochemistry 29, 5647–5659 (1990).

    Article  CAS  Google Scholar 

  12. Jongeneel, C.V., Bouvier, J. & Bairoch, A. FEBS Lett. 242, 211– 214 (1989).

    Article  CAS  Google Scholar 

  13. Holmes, M.A. & Matthews, B.W. J. Mol. Biol. 160 , 623–629 (1982).

    Article  CAS  Google Scholar 

  14. Becker, A., Schlichting, I., Kabsch, W., Schultz, S. & Wagner, A.F.V. J. Biol. Chem. 273 , 11413–11416 (1998).

    Article  CAS  Google Scholar 

  15. Brünger, A.T. J. Mol. Biol. 203, 803–816 (1988).

    Article  Google Scholar 

  16. Wei, Y. & Pei, D. Anal. Biochem. 250, 29–34 (1997).

    Article  CAS  Google Scholar 

  17. Meinnel, T. & Blanquet, S. J. Bacteriol. 177, 1883–1887 (1995).

    Article  CAS  Google Scholar 

  18. Meinnel, T., Lazennec, C. & Blanquet, S. J. Mol. Biol. 254, 175– 183 (1995).

    Article  CAS  Google Scholar 

  19. Meinnel, T., Lazennec, C., Villoing, S. & Blanquet, S. J. Mol. Biol. 267, 749–761 (1997).

    Article  CAS  Google Scholar 

  20. Matthews, B.W. Acc. Chem. Res. 21, 333–340 (1988).

    Article  CAS  Google Scholar 

  21. Ménard, R. & Storer, A.C. Biol. Chem. Hoppe-Seyler 373, 393–400 ( 1992).

    Article  Google Scholar 

  22. Kabsch, W. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  23. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  25. Esnouf, R.M. J. Mol. Graphics 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  26. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank D. Madden, K. Fritz-Wolf and K. Scheffzek for critical discussions and help at various stages of the project, H. Wagner for excellent maintenance of the X-ray facilities at the MPI Heidelberg, I. Dehof for help with the figures, and K. Holmes and J. Knappe for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kabsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Schlichting, I., Kabsch, W. et al. Iron center, substrate recognition and mechanism of peptide deformylase . Nat Struct Mol Biol 5, 1053–1058 (1998). https://doi.org/10.1038/4162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing