Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of glasses below the glass transition

Abstract

A wide variety of materials ranging from metals to polymers can solidify as glasses rather than crystals. The glass transition is associated with a slowing down of molecular motion: a liquid becomes a glass when structural relaxation no longer occurs on experimentally accessible timescales. Most of our current knowledge about collective molecular motion in glass-forming materials is based on observations of the supercooled liquid state above the glass transition1,2. The lack of direct information about molecular dynamics in the glass state itself leaves room for conflicting models of the glass transition2–9. Here we show that, by taking advantage of confinement effects in thin films, molecular dynamics can also be probed experimentally below the glass transition. We use second-harmonic generation to study the relaxation behaviour of molecules of a glass-forming liquid crystal confined in a thin film on a silica plate. Our measurements provide direct evidence that the collective character of molecular motion is responsible for the slowing down of mobility in glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angell, C. A. Relaxation in liquids, polymers and plastic crystal-strong/fragile patterns and related problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  2. Jäckle, J. Models of the glass transition. Rep. Prog. Phys. 49, 171–231 (1986).

    Article  ADS  Google Scholar 

  3. Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Hansen, J. P. Clarifying the kinetic glass transition. Phys. World 4 (12), 32–36 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Götze, W., Sjögren, L. Relaxation process in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  6. Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: distinguishing the temperature dependences predicted by various models of supercooled liquids. Phys. Rev. E 53, 751–758 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Sethna, J. P., Shore, J. D. & Huang, M. Scaling theory for the glass transition. Phys. Rev. B 44, 4943–4959 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Brüning, R. & Samwer, K. Glass transition on long time scales. Phys. Rev. B. 46, 11318–11322 (1992).

    Article  ADS  Google Scholar 

  10. Jäckle, J. Thermoviscoelastic theory of freezing of stress and strain in a symmetrically cooled infinite glass plate. J. Non-Cryst. Solids 172–174, 104–107 (1994).

    Article  ADS  Google Scholar 

  11. Cicerone, M. T., Blackburn, F. R. & Ediger, M. D. How do molecules move near Tg? Molecular rotation of six probes in o-terphenyl across 14 decades in time. J. Chem. Phys. 102, 471–479 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Targus, G. A thermodynamic theory of supercooled liquids. Physica A 219, 27–38 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Jenckel, E. Zur Temperaturabhängigkeit der Viscosität van Schmeizen. Z. Phys. Chem. 184, 309–319 (1939).

    Google Scholar 

  14. McLaughlin, E. & Ubbelohde, A. R. Structure and viscosity of melts of aromatic hydrocarbons. Trans. Faraday Soc. 54, 1804–1810 (1958).

    Article  CAS  Google Scholar 

  15. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

  16. Fisher, E. W., Donth, E. & Steffen, W. Temperature dependence of characteristic length for glass transition. Phys. Rev. Lett. 68, 2344–2346 (1992).

    Article  ADS  Google Scholar 

  17. Kondo, T. & Tsumuraya, K. Isosahedral clustering in a supercooled liquid and glass. J. Chem. Phys. 94, 8220–8226 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Mansfield, K. F. & Theordorou, D. N. Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24, 6283–6294 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Ray, P. & Binder, K. Finite-size effect in the dynamics near the glass transition. Europhys. Lett. 27, 53–58 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Ernst, R. M., Nagel, S. R. & Grest, G. S. Search for a correlation length in a simulation of the glass transition. Phys. Rev. B 43, 8070–8080 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Jackson, C. L. & McKenna, G. B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131–133, 221–224 (1991).

    Article  ADS  Google Scholar 

  22. Zhang, J., Liu, G. & Jonas, J. Effects of confinement on the glass transition temperature of molecular liquids. J. Phys. Chem. 96, 3478–3480 (1992).

    Article  CAS  Google Scholar 

  23. Reiter, G. Mobility of polymers in films thinner than their unperturbed size. Europhys. Lett. 23, 579–584 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994); Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219–230 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. & Dutcher, J. R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Schüller, J., Mel'nichenko, Yu. B., Richert, R. & Fischer, E. W. Dielectric studies of the glass transition in porous media. Phys. Rev. Lett. 73, 2224–2227 (1994).

    Article  ADS  Google Scholar 

  27. Guyot-Sionnest, P., Hsiung, H. & Shen, Y. R. Surface polar ordering in a liquid crystal observed by optical second-harmonic generation. Phys. Rev. Lett. 57, 2963–2966 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Jérôme, B., O'Brien, J., Ouchi, Y., Stanners, C. & Shen, Y. R. Bulk reorientation driven by orientational transitin in a liquid crystal monolayer. Phys. Rev. Lett. 71, 758–761 (1993).

    Article  ADS  Google Scholar 

  29. de Wit, P. P., Erdhuisen, E. W. P. & Picken, S. J. patent WO 96/03476.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jérôme, B., Commandeur, J. Dynamics of glasses below the glass transition. Nature 386, 589–592 (1997). https://doi.org/10.1038/386589a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386589a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing