Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wind-dominated optical line emission from accretion disks around luminous cataclysmic variable stars

Abstract

CATACLYSMIC variable stars are thought to consist of a low-mass star orbiting a more massive white-dwarf primary star. Gas from the secondary star flows onto the white dwarf by way of an accretion disk, and the recurrent outbursts that characterize these objects are attributed to either instabilities in the accretion disk (in the case of dwarf novae) or thermonuclear explosions of material accumulated on the white dwarf (for novae). Observations1,2 of low-luminosity cataclysmic variables have revealed double-peaked emission lines consistent with the accretion-disk picture. But the emission lines associated with high-luminosity cataclysmic variables are single-peaked3–9, which poses a considerable challenge for the disk theory10,11. It has been suggested that winds from the accretion disk, driven by radiation pressure, might be responsible for altering the emission-line characteristics4,10. Here we present a model of the disk wind in which the emission lines arise in a thin layer where the wind emerges from the disk. In our model, the accelerating wind introduces a pronounced anisotropy in the optical depth of the disk, from which single-peaked emission lines naturally arise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Young, P., Schneider, D. P. & Shectman, S. A. Astrophys. J. 245, 1035–1042 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Horne, K. & Marsh, T. R. Mon. Not. R. Astron. Soc. 218, 761–773 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Young, P., Schneider, D. P. & Shectman, S. A. Astrophys. J. 244, 259–268 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Honeycutt, R. K., Schlegel, E. M. & Kaitchuck, R. H. Astrophys. J. 302, 388–402 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Thorstensen, J. R. et al. Astron. J. 102, 272–283 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Dhillon, V. S., Marsh, T. R. & Jones, D. H. P. Mon. Not. R. Astron. Soc. 252, 342–356 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Beuermann, K. et al. Astron. Astrophys. 256, 442–446 (1992).

    ADS  CAS  Google Scholar 

  8. Dhillon, V. S., Jones, D. H. P., Marsh, T. R. & Smith, R. C. Mon. Not. R. Astron. Soc. 258, 225–240 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Still, M. D., Dhillon, V. S. & Jones, D. H. P. Mon. Not. R. Astron. Soc. 273, 863–876 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Marsh, T. R. & Horne, K. Astrophys. J. 349, 593–607 (1990).

    Article  ADS  Google Scholar 

  11. Dhillon, V. S., Marsh, T. R. & Jones, D. H. P. in Accretion Powered Compact Binaries (ed. Mauche, C.) 127–132 (Cambridge Univ., 1990).

    Google Scholar 

  12. Rutten, R. G. M. et al. Nature 362, 518–520 (1993).

    Article  ADS  Google Scholar 

  13. Warner, B. Cataclysmic Variable Stars (Cambridge Univ., 1995).

    Book  Google Scholar 

  14. Williams, R. E. Astron. J. 97, 1752–1758 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Miyoshi, M. et al. Nature 373, 127–129 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Eracleous, M. & Halpern, J. P. Astrophys. J. Suppl. Ser. 90, 1–30 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Kinney, A. L. in The First Stromlo Symposium: The Physics of Active Galactic Nuclei (eds Bicknell, B. V., Doptia, M. A. & Quinn, P. J.) 61–71 (ASP Conf. Ser. 54, San Francisco, 1994).

    Google Scholar 

  18. Murray, N., Chiang, J., Grossman, S. A. & Voit, G. M. Astrophys. J. 451, 498–509 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Murray, N. & Chiang, J. Astrophys. J. (in the press).

  20. Drew, J. E. Mon. Not. R. Astron. Soc. 224, 595–632 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Mauche, C. W. et al. Astrophys. J. 424, 347–369 (1994).

    Article  ADS  Google Scholar 

  22. Shlosman, I., Vitello, P. & Mauche, C. W. Astrophys. J. 461, 377–385 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Shlosman, I. & Vitello, P. Astrophys. J. 409, 372–386 (1993).

    Article  ADS  CAS  Google Scholar 

  24. van Teeseling, A. & Verbunt, F. Astron. Astrophys. 292, 519–533 (1994).

    ADS  Google Scholar 

  25. Richman, H. R. Astrophys. J. 462, 404–427 (1996).

    Article  ADS  Google Scholar 

  26. Mauche, C. W., Raymond, J. C. & Matei, J. A. Astrophys. J. 446, 842–851 (1995).

    Article  ADS  Google Scholar 

  27. Mauche, C. W. in Proc. IAU Colloquium 158 (eds Evans, A. & Wood, J. H.) (Dordrecht, Kluwer, 1996).

    Google Scholar 

  28. Horne, K. Astron. Astrophys. 297, 273–284 (1995).

    ADS  CAS  Google Scholar 

  29. Hellier, C. & Robinson, E. L. Astrophys. J. 431, L107–L110 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, N., Chiang, J. Wind-dominated optical line emission from accretion disks around luminous cataclysmic variable stars . Nature 382, 789–791 (1996). https://doi.org/10.1038/382789a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382789a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing