Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intersubunit rotation in active F-ATPase

Abstract

THE enzyme ATP synthase, or F-ATPase, is present in the membranes of bacteria, chloroplasts and mitochondria. Its structure is bipartite, with a proton-conducting, integral membrane portion, F0, and a peripheral portion, F1. Solubilized F1 is composed of five different subunits, (αβ)3γδη, and is active as an ATPase1,2. The function of F-ATPase is to couple proton translocation through F0 with ATP synthesis in F1 (ref. 3). Several lines of evidence support the spontaneous formation of ATP on F1 (refs 4,5) and its endergonic release6 at cooperative and rotating (or at least alternating) sites7. The release of ATP at the expense of protonmotive force might involve mechanical energy transduction from F0 into F1 by rotation of the smaller subunits (mainly γ) within (αβ)3, the catalytic hexagon of F1 as suggested by electron microscopy8, by X-ray crystal structure analysis9 and by the use of cleavable crosslinkers10. Here we record an intersubunit rotation in real time in the functional enzyme by applying polarized absorption relaxation after photobleaching to immobilized F1 with eosin-labelled γ. We observe the rotation of γ relative to immobilized (αβ)3 in a timespan of 100 ms, compatible with the rate of ATP hydrolysis by immobilized F1. Its angular range, which is of at least 200 degrees, favours a triple-site mechanism of catalysis7,11, with γ acting as a crankshaft in (αβ)3. The rotation of γ is blocked when ATP is substituted with its non-hydrolysable analogue AMP-PNP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Senior, A. E. A. Rev. Biophys. biophys. Chem. 19, 7–41 (1990).

    Article  CAS  Google Scholar 

  2. Walker, J. E. The Biochemist 16, 31–351 (1994).

    Google Scholar 

  3. Mitchell, P. Nature 191, 144–148 (1961).

    Article  ADS  CAS  Google Scholar 

  4. Boyer, P. D., Cross, R. L. & Momsen, W. Proc. natn. Acad. Sci. U.S.A. 70, 2837–2839 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Grubmeyer, C., Cross, R. L. & Penefsky, H. S. J. biol. Chem. 25, 12092–120100 (1982).

    Google Scholar 

  6. Penefsky, H. S. Proc. natn. Acad. Sci. U.S.A. 82, 1589–1593 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Boyer, P. D. Biochim. biophys. Acta 1140, 215–250 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Gogol, E. P., Johnston, E., Aggeler, R. & Capaldi, R. A. Proc. natn. Acad. Sci. U.S.A. 87, 9585–9589 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Nature 370, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L. & Cross, R. L. Proc. natn. Acad. Sci. U.S.A. 92, 10964–10968 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Weber, J. Wilke-Mounts, S. & Senior, A. E. J. biol. Chem. 269, 20462–20467 (1994).

    CAS  PubMed  Google Scholar 

  12. Junge, W. Schaffernicht, H. & Nelson, N. Biochim. biophys. Acta 462, 73–85 (1977).

    Article  CAS  Google Scholar 

  13. Perrin, F. Le Journal de Physique et le Radium 7, 1–11 (1936).

    Article  CAS  Google Scholar 

  14. Jablonski, A. Z. Physik 96, 236–246 (1935).

    Article  CAS  Google Scholar 

  15. Wahl, P. Chem. Phys. 7, 210–219 (1975).

    Article  CAS  Google Scholar 

  16. Moroney, J. V., Fullmer, C. S. & McCarty, R. E. J. biol. Chem. 259, 7281–7285 (1984).

    CAS  PubMed  Google Scholar 

  17. Miki, J., Maeda, M., Mukohata, Y. & Futai, M. FEBS Lett. 232, 221–226 (1988).

    Article  CAS  Google Scholar 

  18. Wagner, R. & Junge, W. Biochemistry 21, 1890–1899 (1982).

    Article  CAS  Google Scholar 

  19. Engelbrecht, S., Schürmantn, K. & Junge, W. Eur. J. Biochem. 179, 117–122 (1989).

    Article  CAS  Google Scholar 

  20. Engelbrecht, S., Lill, H. & Junge, W. Eur. J. Biochem. 160, 635–643 (1986).

    Article  CAS  Google Scholar 

  21. LeBel, D., Poirier, G. G. & Beaudoin, A. R. Analyt. Biochem. 85, 86–89 (1978).

    Article  CAS  Google Scholar 

  22. Parker, C. A. & Hatchard, C. G. Trans. Faraday Soc. 57, 1894–1909 (1961).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbert, D., Engelbrecht, S. & Junge, W. Intersubunit rotation in active F-ATPase. Nature 381, 623–625 (1996). https://doi.org/10.1038/381623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381623a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing