Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital migration of the planetary companion of 51 Pegasi to its present location

Abstract

THE recent discovery1 and confirmation2 of a possible planetary companion orbiting the solar-type star 51 Pegasi represent a breakthrough in the search for extrasolar planetary systems. Analysis of systematic variations in the velocity of the star indicate that the mass of the companion is approximately that of Jupiter, and that it is travelling in a nearly circular orbit at a distance from the star of 0.05 AU (about seven stellar radii). Here we show that, if the companion is indeed a gas-giant planet, it is extremely unlikely to have formed at its present location. We suggest instead that the planet probably formed by gradual accretion of solids and capture of gas at a much larger distance from the star (5 AU), and that it subsequently migrated inwards through interactions with the remnants of the circumstellar disk. The planet's migration may have stopped in its present orbit as a result of tidal interactions with the star, or through truncation of the inner circumstellar disk by the stellar magnetosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayor, F. & Queloz, D. Nature 378, 355–359 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Marcy, G. & Butler, R. P. IAU Circ. No. 6251 (1995).

  3. Lin, D. N. C. & Papaloizou, J. in Protostars and Planets II (eds Black, D. C. & Matthews, M. S.) 981–1072 (Univ. Arizona Press, Tucson, 1985).

    Google Scholar 

  4. Beckwith, S. V. W., Sargent, A. I., Chini, R. & Güsten, R. Ast J. 99, 924–945 (1990).

    Article  ADS  Google Scholar 

  5. Wetherill, G. W. A. Rev. Astr. Astrophys. 18, 77–113 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Bodenheimer, P. & Pollack, J. B. Icarus 67, 391–408 (1986).

    Article  ADS  Google Scholar 

  7. Cameron, A. G. W. Moon Planets 18, 5–40 (1978).

    Article  ADS  Google Scholar 

  8. Laughlin, G. & Bodenheimer, P. Astrophys. J. 436, 335–354 (1994).

    Article  ADS  Google Scholar 

  9. Laughlin, G. & Bodenheimer, P. Astrophys. J. 403, 303–314 (1993).

    Article  ADS  Google Scholar 

  10. Stringfellow, G., Black, D. C. & Bodenheimer, P. Astrophys. J. 349, L59–L62 (1990).

    Article  ADS  Google Scholar 

  11. Saumon, D., Chabrier, G. & Van Horn, H. M. Astrophys. J. Suppl. Ser. 99, 713–741 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Goldreich, P. & Soter, S. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  13. Shu, F. H. The Physical Universe 441 (University Science Books, Mill Valley, CA, 1982).

    Google Scholar 

  14. Zahnle, K. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 1305–1338 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  15. Burrows, A. & Lunine, J. Nature 378, 333 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Pollack, J. B. et al. Icarus (submitted).

  17. Lin, D. N. C. & Papaloizou, J. C. B. Mon. Not. R. astr. Soc. 186, 799–812 (1979).

    Article  ADS  Google Scholar 

  18. Papaloizou, J. C. B. & Lin, D. N. C. Astrophys. J. 285, 818–834 (1984).

    Article  ADS  Google Scholar 

  19. Lin, D. N. C. & Papaloizou, J. C. B. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 749–836 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  20. Strom, S. E., Edwards, S. & Skrutskie, M. F. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 837–866 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  21. Goldreich, P. & Tremaine, S. Astrophys. J. 241, 425–441 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. Lin, D. N. C. & Papaloizou, J. C. B. Astrophys. J. 309, 846–857 (1986).

    Article  ADS  Google Scholar 

  23. Takeuchi, T., Miyama, S. & Lin, D. N. C. Astrophys. J. (in the press).

  24. Mathieu, R. D. A. Rev. Astr. Astrophys. 32, 465–530 (1994).

    Article  ADS  Google Scholar 

  25. Skumanich, A. Astrophys. J. 171, 565–567 (1972).

    Article  ADS  CAS  Google Scholar 

  26. D'Antona, F. & Mazzitelli, I. Astrophys. J. Suppl. Ser. 90, 467–500 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Bouvier, J., Cabrit, S., Fernandez, M., Martin, E. L. & Matthews, J. M. Ast. Astrophys. 272, 176–206.

  28. Königl, A. Astrophys. J. 370, L39–L43 (1991).

    Article  ADS  Google Scholar 

  29. Shu, F. H. et al. Astrophys. J. 429, 781–796 (1994).

    Article  ADS  Google Scholar 

  30. Goldreich, P. & Tremaine, S. Astrophys. J. 233, 857–871 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  31. MacGregor, K. & Bremner, M. Astrophys. J. 376, 204–213 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Bodenheimer, P. & Richardson, D. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). https://doi.org/10.1038/380606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing