Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse

Abstract

During site-specific DNA recombination, which brings about genetic rearrangement in processes such as viral integration and excision and chromosomal segregation, recombinase enzymes recognize specific DNA sequences and catalyse the reciprocal exchange of DNA strands between these sites. The bacteriophage recombinase Cre catalyses site-specific recombination between two 34-base-pair loxP sites. The crystal structure at 2.4 Å resolution of Cre bound to a loxP substrate reveals an intermediate in the recombination reaction, in which a Cre molecule has cleaved the substrate to form a covalent 3′-phosphotyrosine linkage with the DNA. Four recombinases and two loxP sites form a synapsed structure in which the DNA resembles models of four-way Holliday-junction intermediates. The Cre–loxP complex challenges models of site-specific recombination that require large changes in quaternary structure. Subtle allosteric changes at the carboxy termini of the Cre subunits may instead coordinate the cleavage and strand-exchange reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The Cre–loxP site-specific recombination reaction, based on studies in the lambda integrase family1 and on the work described here.
Figure 2: Stereo ribbon model49 of the Cre–loxA complex.
Figure 5: Ribbon and space-filling models50 of the Cre–loxA synapse.
Figure 3: a, Ribbon model49 of Cre recombinase.
Figure 4: The Cre–loxA active sites.

Similar content being viewed by others

References

  1. Craig, N. L. The mechanism of conservative site-specific recombination. Annu. Rev. Genet. 22, 77–105 (1988).

    Google Scholar 

  2. Stark, W. M., Boocock, M. R. & Sherratt, D. J. Catalysis by site-specific recombinases. Trends Genet. 8, 432–439 (1992).

    Google Scholar 

  3. Kwon, H. J., Tirumalai, R., Landy, A. & Ellenberger, T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276, 126–131 (1997).

    Google Scholar 

  4. Argos, P.et al. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5, 433–440 (1986).

    Google Scholar 

  5. Abremski, K. E. & Hoess, R. H. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng. 5, 87–91 (1992).

    Google Scholar 

  6. Landy, A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949 (1989).

    Google Scholar 

  7. Abremski, K., Hoess, R. & Sternberg, N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32, 1301–1311 (1983).

    Google Scholar 

  8. Abremski, K. & Hoess, R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 259, 1509–1514 (1984).

    Google Scholar 

  9. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M. & Hoess, R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harbor Symp. Quant. Biol. 1, 297–309 (1981).

    Google Scholar 

  10. Sauer, B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Meth. Enzymol. 225, 890–900 (1993).

    Google Scholar 

  11. Kilby, N. J., Snaith, M. R. & Murray, J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Google Scholar 

  12. Tsurushita, N., Fu, H. & Warren, C. Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. Gene 172, 59–63 (1996).

    Google Scholar 

  13. Qin, M., Bayley, C., Stockton, T. & Ow, D. W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl Acad. Sci. USA 91, 1706–1710 (1994).

    Google Scholar 

  14. Lakso, M.et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6232–6236 (1992).

    Google Scholar 

  15. Betz, U. A., Vosshenrich, C. A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol. 6, 1307–1316 (1996).

    Google Scholar 

  16. Zou, Y. R., Muller, W., Gu, H. & Rajewsky, K. Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr. Biol. 4, 1099–1103 (1994).

    Google Scholar 

  17. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Google Scholar 

  18. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-spedific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA 92, 6991–6995 (1995).

    Google Scholar 

  19. Hickman, A. B., Waninger, S., Scocca, J. J. & Dyda, F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 Å resolution. Cell 89, 227–237 (1997).

    Google Scholar 

  20. Subramanya, H. S.et al. Crystal structure of the site-specific recombinase, XerD. EMBO J. 17, 5178–5187 (1997).

    Google Scholar 

  21. Schultz, S. C., Shields, G. C. & Steitz, T. A. Crystallization of Escherichia coli catabolite gene activator protein with its DNA-binding site. The use of modular DNA. J. Mol. Biol. 213, 159–166 (1990).

    Google Scholar 

  22. Pargellis, C. A., Nunes-Duby, S., de, V. L. & Landy, A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J. Biol. Chem. 263, 7678–7685 (1988).

    Google Scholar 

  23. Sigal, N. & Alberts, B. Genetic recombination: the nature of crossed strand-exchange between two homologous DNA molecules. J. Mol. Biol. 71, 789–793 (1972).

    Google Scholar 

  24. Duckett, D. R.et al. The structure of the Holliday junction, and its resolution. Cell 55, 79–89 (1988).

    Google Scholar 

  25. Hoess, R. H. & Abremski, K. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc. Natl Acad. Sci. USA 81, 1026–1029 (1984).

    Google Scholar 

  26. Hoess, R., Abremski, K., Irwin, S., Kendall, M. & Mack, A. DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J. Mol. Biol. 216, 873–882 (1990).

    Google Scholar 

  27. Chen, J. W., Lee, J. & Jayaram, M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69, 647–658 (1992).

    Google Scholar 

  28. Rafferty, J. B.et al. Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274, 415–420 (1996).

    Google Scholar 

  29. Lavery, R. & Sklenar, H. The definition of generalised helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988).

    Google Scholar 

  30. Hoess, R. H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).

    Google Scholar 

  31. Stark, W. M., Sherratt, D. J. & Boocock, M. R. Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58, 779–790 (1989).

    Google Scholar 

  32. Kitts, P. A. & Nash, H. A. Homology-dependent interactions in phage lambda site-specific recombination. Nature 329, 346–348 (1987).

    ADS  CAS  PubMed  Google Scholar 

  33. Nunes-Duby, S., Azaro, M. A. & Landy, A. Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination. Curr. Biol. 5, 139–148 (1995).

    Google Scholar 

  34. Arciszewska, L. K., Grainge, I. & Sherratt, D. J. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J. 16, 3731–3743 (1997).

    Google Scholar 

  35. Azaro, M. A. & Landy, A. The isometric preference of Holliday junctions influences resolution bias by lambda integrase. EMBO J. 16, 3744–3755 (1997).

    Google Scholar 

  36. Stark, W. M. & Boocock, M. R. Gatecrashers at the catalytic party. Trends Genet. 11, 121–123 (1995).

    Google Scholar 

  37. Shaikh, A. C. & Sadowski, P. D. The Cre recombinase cleaves the lox site in trans. J. Biol. Chem. 272, 5695–5702 (1997).

    Google Scholar 

  38. Nunes-Duby, S.et al. Lambda integrase cleaves DNA in cis. EMBO J. 13, 4421–4430 (1994).

    Google Scholar 

  39. Arciszewska, L. K. & Sherratt, D. J. Xer site-specific recombination in vitro. EMBO J. 14, 2112–2120 (1995).

    Google Scholar 

  40. Blakely, G. W. & Sherratt, D. J. Cis and trans in site-specific recombination. Mol. Microbiol. 20, 233–238 (1996).

    Google Scholar 

  41. Qian, X. H., Inman, R. B. & Cox, M. M. Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination. J. Biol. Chem. 265, 21779–21788 (1990).

    Google Scholar 

  42. Van Duyne, G. D., Ghosh, S., Maas, W. K. & Sigler, P. B. Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. J. Mol. Biol. 256, 377–391 (1996).

    Google Scholar 

  43. Otwinowski, Z. in CCP4 Proc.80-88 (Daresbury Laboratory, Warrington, UK, (1991)).

    Google Scholar 

  44. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochontrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Google Scholar 

  45. Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Prot. Struct. Funct. Genet. 19, 277–290 (1996).

    Google Scholar 

  46. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Google Scholar 

  47. Jiang, J. S. & Brunger, A. T. Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsion and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Google Scholar 

  48. Parkinson, G., Vojtechovsky, J., Clowney, L., Brunger, A. T. & Berman, H. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr. D 52, 57–64 (1996).

    Google Scholar 

  49. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Google Scholar 

Download references

Acknowledgements

We thank L. Berman and Z. Yin for access to and help with the NSLS X25 beamline, W. Hendrickson and C. Ogata for access to and help with the NSLS X4A beamline, J. Ni for assistance with data collection, Y.-M. Zheng for technical support, R. Hoess for valuable discussions, and M. Lemmon, H. Nelson, M. Lewis, H. Lu and K. Ferguson for helpful comments. This work was partly supported by ACS IRG and NCI core support grants through the V. Penn Cancer Center.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Gopaul, D. & Van Duyne, G. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997). https://doi.org/10.1038/37925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37925

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing