Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The human X-inactivation centre is not required for maintenance of X-chromosome inactivation

Abstract

X-CHROMOSOME inactivation occurs early in mammalian female development to achieve dosage compensation with males1. Although it is widely accepted that this inactivation requires the presence in cis of the X-inactivation centre (XIC)2–5, it is not known whether the XIC is required for the initiation, promulgation or maintenance of X inactivation6,7. The XIST gene, which is localized within the XIC interval on both the human and mouse X chromosomes, is constitutively expressed from inactive X chromosomes8–10, suggesting a possible role in the maintenance of X inactivation. To address whether the presence of the XIC, including the XIST gene, is continuously required for the maintenance of X-chromosome inactivation, we have analysed the transcriptional activity of a number of X-linked genes in mouse/human somatic cell hybrids retaining an intact human inactive X chromosome or derivatives of the inactive X chromosome lacking the XIC. Genes subject to X inactivation remain transcriptionally silent despite the loss of the XIC, demonstrating that the presence of the XIC is not required for the maintenance of X inactivation in somatic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyon, M. F. Nature 190, 372–373 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Russell, L. B. Science 140, 976–978 (1963).

    Article  ADS  CAS  Google Scholar 

  3. Lyon, M. F. in 2nd Int. Conf. congenit. Malform. 67–68 (Int. Med. Cong., New York, 1963).

    Google Scholar 

  4. Mattei, M. G., Mattei, J. F., Vidal, I. & Giraud, F. Hum. Genet. 56, 401–408 (1981).

    Article  CAS  Google Scholar 

  5. Brown, C. J. et al. Nature 349, 82–84 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Brown, C. J. & Willard, H. F. Adv. dev. Biol. 2, 37–72 (1993).

    Article  Google Scholar 

  7. Lyon, M. F. A. Rev. Genet. 26, 17–28 (1992).

    Article  Google Scholar 

  8. Brown, C. J. et al. Nature 349, 38–44 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Brown, C. J. et al. Cell 71, 527–542 (1992).

    Article  CAS  Google Scholar 

  10. Brockdorff, N. et al. Cell 71, 515–526 (1992).

    Article  CAS  Google Scholar 

  11. Lafreniere, R. G. et al. Genomics 11, 352–363 (1991).

    Article  CAS  Google Scholar 

  12. Goodfellow, P., Pym, B., Mohandas, T. & Shapiro, L. J. Am. J. hum. Genet. 36, 777–782 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gartler, S. M., Dyer, K. A. & Goldman, M. A. in Molecular Genetic Medicine (ed. Friedmann, T.) 121–160 (Academic, New York, 1992).

    Book  Google Scholar 

  14. Gartler, S. M. & Riggs, A. D. A. Rev. Genet. 17, 155–190 (1983).

    Article  CAS  Google Scholar 

  15. Riggs, A. D. Aust. J. Zool. 37, 419–441 (1990).

    Article  Google Scholar 

  16. Jeppesen, P. & Turner, B. M. Cell 74, 281–289 (1993).

    Article  CAS  Google Scholar 

  17. Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Science 211, 393–396 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Brown, C. J., Vivona, A., Parikh, S., Bedford, M. & Willard, H. F. Cytogenet. Cell Genet. 51, 970 (1989).

    Google Scholar 

  19. Richler, C., Soreq, H. & Wahrman, J. Nature Genet. 2, 192–195 (1992).

    Article  CAS  Google Scholar 

  20. Salido, E. C., Yen, P. H., Mohandas, T. K. & Shapiro, L. J. Nature Genet. 2, 196–199 (1992).

    Article  CAS  Google Scholar 

  21. McCarrey, J. R. & Dilworth, D. D. Nature Genet. 2, 200–203 (1992).

    Article  CAS  Google Scholar 

  22. Kay, G. F. et al. Cell 72, 171–182 (1993).

    Article  CAS  Google Scholar 

  23. Brown, C. J., Flenniken, A. M., Williams, B. R. G. & Willard, H. F. Nucleic Acids Res. 18, 4191–4195 (1990).

    Article  CAS  Google Scholar 

  24. Brown, C. J. & Willard, H. F. Am. J. hum. Genet. 45, 592–598 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Giles, R. E. & Ruddle, F. H. Genetics 93, 975–996 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown, R. M., Dahl, H. H. M. & Brown, G. K. Genomics 4, 174–181 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C., Willard, H. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368, 154–156 (1994). https://doi.org/10.1038/368154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing