Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse

Abstract

In many studies of central synaptic transmission, the quantal properties of miniature synaptic events do not match those derived from synaptic events evoked by action potentials. Here we show that at mossy fiber–granule cell (MF–gc) synapses of mature cerebellum, evoked excitatory postsynaptic currents (EPSCs) are multiquantal, and their amplitudes vary in discrete steps, whereas miniature (m)EPSCs are monoquantal or multiquantal with quantal parameters identical to those of the EPSCs. In contrast, at immature MF–gc synapses, EPSCs are multiquantal, but their amplitudes do not vary in discrete steps, whereas most mEPSCs seem to be monoquantal with a broad and skewed amplitude distribution. The results demonstrate that quantal variance decreases during synaptic development. They also directly confirm the quantal hypothesis of neurotransmission at a mature brain synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evoked EPSCs at adult cerebellar MF–gc synapses show quantal fluctuations in amplitude.
Figure 2: Quantal parameters of monoquantal EPSCs and monoquantal and multiquantal mEPSCs at adult cerebellar MF–gc synapses.
Figure 3: Evidence for the multiquantal nature of mEPSCs at some adult MF–gc synapses.
Figure 4: Monoquantal mEPSCs at mature MF–gc synapses in the presence of 2.4 mM strontium.
Figure 5: EPSCs and mEPSCs at immature MF–gc synapses do not show quantal fluctuations in amplitude.
Figure 6: The variation in mEPSC amplitude at immature synapses does not seem to be due to multivesicular release.

Similar content being viewed by others

References

  1. Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure Of The Nervous System. Neurons And Their Supporting Cells. (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  3. del Castillo, J. & Katz, B. Quantal components of the endplate potential. J. Physiol. (Lond.) 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  4. Katz, B. Nerve, Muscle and Synapse. (McGraw-Hill, New York, 1966).

    Google Scholar 

  5. Blackman, J. G., Ginsborg, B. L. & Ray, C. Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J. Physiol. (Lond.) 167, 389–401 (1963).

    Article  CAS  Google Scholar 

  6. Martin, A. R. & Pilar, G. Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (Lond.) 175, 1–16 ( 1964).

    Article  CAS  Google Scholar 

  7. Dennis, M. J., Harris, A. J. & Kuffler, S. W. Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. R. Soc. Lond. B Biol. Sci. 177, 509 –539 (1971).

    Article  CAS  Google Scholar 

  8. Bornstein, J. C. Spontaneous multiquantal release at synapses in guinea-pig hypogastric ganglia: evidence that release can occur in bursts. J. Physiol. (Lond.) 282, 375–398 ( 1978).

    Article  CAS  Google Scholar 

  9. Bekkers, J. M. Quantal analysis of synaptic transmission in the central nervous system. Curr. Opin. Neurobiol. 4, 360–365 (1994).

    Article  CAS  Google Scholar 

  10. Bennett, M. R. The origin of Gaussian distributions of synaptic potentials. Prog. Neurobiol. 46, 331–350 ( 1995).

    Article  CAS  Google Scholar 

  11. Edwards, F. A., Konnerth, A. & Sakmann, B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch clamp study. J. Physiol. (Lond.) 430, 213–249 (1990).

    Article  CAS  Google Scholar 

  12. Larkman, A., Stratford, K. & Jack, J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350, 344– 347 (1991).

    Article  CAS  Google Scholar 

  13. Paulsen, O. & Heggelund, P. The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea-pig thalamic slices. J. Physiol. (Lond.) 480, 505– 511 (1994).

    Article  CAS  Google Scholar 

  14. Paulsen O. & Heggelund, P. Quantal properties of spontaneous EPSCs in neurones of the guinea-pig dorsal lateral geniculate nucleus. J. Physiol. (Lond.) 496, 759–772 (1996).

    Article  CAS  Google Scholar 

  15. Min, M.-Y. & Appenteng, K. Multimodal distributions of amplitudes of miniature and spontaneous EPSPs recorded in rat trigeminal motoneurones. J. Physiol. (Lond.) 494, 171– 182 (1996).

    Article  CAS  Google Scholar 

  16. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 ( 1993).

    Article  CAS  Google Scholar 

  17. Kraszewski, K. & Grantyn, R. Unitary, quantal and miniature GABA-activated synaptic chloride currents in cultured neurons from the rat superior colliculus. Neuroscience 47, 555–570 (1992).

    Article  CAS  Google Scholar 

  18. Liu, G. & Feldman, J. L. Quantal synaptic transmission in phrenic motor nucleus. J. Neurophysiol. 68, 1468–1471 (1992).

    Article  CAS  Google Scholar 

  19. Kullmann, D. M. & Nicholl, R. A. Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357, 240–244 ( 1992).

    Article  CAS  Google Scholar 

  20. Liao, D., Jones, A. & Malinow, R. Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron 9, 1089–1097 (1992).

    Article  CAS  Google Scholar 

  21. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–251 (1996).

    Article  CAS  Google Scholar 

  22. Bekkers, J. M. & Stevens, C. F. Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. J. Neurophysiol. 73, 1145– 1156 (1995).

    Article  CAS  Google Scholar 

  23. Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355 , 163–166 (1992).

    Article  CAS  Google Scholar 

  24. Ropert, N., Miles, R. & Korn, H. Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J. Physiol. (Lond.) 428 , 707–722 (1990).

    Article  CAS  Google Scholar 

  25. Korn, H., Bausela, F., Charpier, S. & Faber, D. S. Synaptic noise and multiquantal release at dendritic synapses. J. Neurophysiol. 70, 1249–1254 (1993).

    Article  CAS  Google Scholar 

  26. Ulrich, D. & Luscher, H.-R. Miniature excitatory synaptic currents corrected for dendritic cable properties reveal quantal size and variance. J. Neurophysiol. 69, 1769– 1773 (1993).

    Article  CAS  Google Scholar 

  27. Hámori, J. & Somogyi, J. Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study. J. Comp. Neurol. 220, 365– 377 (1983).

    Article  Google Scholar 

  28. Mason, C. M. & Gregory, E. Postnatal maturation of cerebellar mossy and climbing fibers; transient expression of dual features on single axons. J. Neurosci. 7, 1715– 1735 (1984).

    Article  Google Scholar 

  29. Traynelis, S. F., Silver, R. A. & Cull-Candy, S. G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  Google Scholar 

  30. D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ : evidence for the role of NMDA receptors. J. Physiol. (Lond.) 484, 397–413 ( 1995).

    Article  CAS  Google Scholar 

  31. Jack, J. B., Larkman, A. U., Major, G. & Stratford, K. J. in Molecular and Cellular Mechanisms of Neurotransmitter Release (eds Stjarne, L. et al. ) 275–299 (Raven, New York, 1994).

    Book  Google Scholar 

  32. Fox, C. A., Hillman, D. E., Siegesmund, K. A. & Dutta, C. R. The primate cerebellar cortex: A Golgi and electron microscopic study. Prog. Brain. Res. 25, 172–225 (1967).

    Google Scholar 

  33. Jakab, R L. & Hámori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179, 81–88 ( 1988).

    Article  CAS  Google Scholar 

  34. Katz, B. & Miledi, R. The measurement of synaptic delay and the timecourse of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B Biol. Sci. 161, 483 –495 (1965).

    Article  CAS  Google Scholar 

  35. Barrett, E. F. & Stevens, C. F. Quantal independence and uniformity of presynaptic release kinetics at the frog neuromuscular junction. J. Physiol. (Lond.) 277, 665– 689 (1972).

    Article  Google Scholar 

  36. Walmsley, B. Interpretation of quantal peaks in distributions of evoked synaptic transmission at central synapses. Proc. R. Soc. Lond. B Biol. Sci. 261, 245–250 (1995).

    Article  CAS  Google Scholar 

  37. Meiri, U. & Rahamimoff, R. Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J. Physiol. (Lond.) 215, 709–726 (1971).

    Article  CAS  Google Scholar 

  38. Abdul-Ghani, M. A., Valiante, T. A. & Pennefather, P. S. Sr 2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture. J. Physiol. (Lond.) 495, 112–125. (1996).

    Article  Google Scholar 

  39. Dilger, J. P., Brett, R. S., Poppers, D. M. & Liu, Y. The temperature dependence of some kinetic and conductance properties of acetylcholine receptor channels . Biochim. Biophys. Acta 1063, 253–258 (1991).

    Article  CAS  Google Scholar 

  40. Feldmeyer, D. & Cull-Candy, S. G. Temperature dependence of NMDA receptor channel conductance levels in outside-out patches from isolated cerebellar granule cells of the rat. J. Physiol. (Lond.) 459, 284P (1993).

    Google Scholar 

  41. Cohen, I. S. & Van Der Kloot, W. Effects of low temperature and terminal membrane potential on quantal size at frog neuromuscular junction. J. Physiol. (Lond.) 336, 335– 344 (1983).

    Article  CAS  Google Scholar 

  42. Van Der Kloot, W. & Cohen, I. S. Temperature effects on spontaneous and evoked quantal size at the frog neuromuscular junction. J. Neurosci. 9, 2200–2203 (1984).

    Article  Google Scholar 

  43. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  Google Scholar 

  44. von Kitzing, E., Jonas, P. & Sakmann B. in Molecular and Cellular Mechanisms of Neurotransmitter Release (eds Stjarne, L. et al. ) 235– 260 (Raven, New York, 1994).

    Book  Google Scholar 

  45. Palay, S. L. & Chan-Palay, V. in Cerebellar Cortex: Cytology and Organization 142–179 (Springer, Berlin, 1974).

    Google Scholar 

  46. Edwards, F. Anatomy and electrophysiology of fast central synapses lead to a structural model for long term potentiation. Physiol. Rev. 75, 759–787 (1995).

    Article  CAS  Google Scholar 

  47. Clements, J. D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163– 171 (1996).

    Article  CAS  Google Scholar 

  48. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA A receptors. J. Physiol. (Lond.) 497, 753–759 (1996).

    Article  CAS  Google Scholar 

  49. Tia, S., Weng, J. F., Kotchabhakdi, N. & Vicini, S. Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABAA receptor α6 subunit. J. Neurosci. 16, 3630–3640 (1996).

    Article  CAS  Google Scholar 

  50. Wall, M. J. & Usowicz, M. M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 9, 533–548 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Wellcome Trust. We are grateful for comments on on an earlier version of the manuscript from Hywel Bufton, Graeme Henderson, John Isaac, Neil Marrion and Elizabeth Tringham. We thank John Isaac for suggesting the paired-pulse experiments and Hywel Bufton for recording some of the EPSCs and mEPSCs in young animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Usowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, M., Usowicz, M. Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1, 675–682 (1998). https://doi.org/10.1038/3677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing