Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic density-dependent regulation of vole populations

Abstract

CONSIDERABLE controversy exists over the role of density-dependent processes in controlling animal population size. In populations that fluctuate cyclically or erratically, for example many voles and insects1,2, theory predicts that either density-dependence is weak1,3, or that density-dependent responses lag behind density4–6. One key mechanism for lagged density-dependence is a delay in regeneration of food resources following heavy exploitation. Here we show that meadow vole (Microtus pennsylvanicus)populations respond immediately to high density by reducing breeding effort and hence population growth, disproving the hypothesis that density-dependence is weak. In addition, vole populations do not show a delay in growth following marked reduction in plant biomass (their source of food and cover). We conclude that intrinsic density-dependence processes tend to stabilize vole populations, and that cyclic dynamics are not caused by lagged effects of resource exploitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andrewartha, H. G. & Birch, L. C. The Distribution and Abundance of Animals (University of Chicago, 1954).

    Google Scholar 

  2. Elton, C. W. Voles, Mice and Lemmings (Clarendon, Oxford, 1942).

    Google Scholar 

  3. Strong, D. R. Trends Ecol. Evol. 1, 39–42 (1986).

    Article  CAS  Google Scholar 

  4. May, R. M. in Theoretical Ecology: Principles and Applications (ed. May, R. M.) 4–25 (Saunders, Philadelphia, 1976).

    Google Scholar 

  5. Turchin, P. Nature 344, 660–663 (1990).

    Article  ADS  Google Scholar 

  6. Hassell, M. P. Trends Ecol. Evol. 1, 90–93 (1986).

    Article  CAS  Google Scholar 

  7. Cockburn, A. Social Behaviour in Fluctuating Populations (Croom Helm, London, 1988).

    Google Scholar 

  8. Hansson, L. & Henttonen H. Trends Ecol. Evol. 3, 195–200 (1988).

    Article  CAS  Google Scholar 

  9. Gaines, M. S. & McClenaghan, L. R. A. Rev. ecol. Syst. 11, 163–196 (1980).

    Article  Google Scholar 

  10. Lidicker, W. Z. in Biology of New World Microtus (ed. Tamarin, R. H.) 420–454 (Am. Soc. Mammal. Spec. Publ., no. 8, 1985).

    Google Scholar 

  11. Krebs, C. J. & Myers, J. H. Adv. ecol. Res. 8, 267–399 (1974).

    Article  Google Scholar 

  12. Schaffer, W. M. & Tamarin, R. H. Evolution 27, 111–124 (1973).

    Article  Google Scholar 

  13. Hasler, J. F. The Biologist 57, 52–86 (1975).

    Google Scholar 

  14. Keller, B. L. in Biology of New World Microtus (ed. Tamarin, R. H.) 725–778 (Am. Soc. Mammal. Spec. Publ., no. 8, 1985).

    Google Scholar 

  15. Hassell, M. P. J. Anim. Ecol. 56, 705–713 (1987).

    Article  Google Scholar 

  16. Dempster, J. P. & Pollard, E. Oikos 46, 413–416 (1986).

    Article  Google Scholar 

  17. Brown, M. W. Ecology 70, 776–779 (1989).

    Article  ADS  Google Scholar 

  18. Stiling, P. Ecology 70, 779–783 (1989).

    Article  Google Scholar 

  19. Hanski, I. Phil. Trans. R. Soc. B 330, 141–150 (1990).

    ADS  Google Scholar 

  20. Gaston, K. J. & Lawton, J. H. Oecologia 74, 404–410 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Ostfeld, R. S. in Wildlife 2001: Populations (eds. McCullough, D. R. & Barrett, R. H.) 851–863 (Elsevier, London, 1992).

    Book  Google Scholar 

  22. Woiwod, I. P. & Hanski, I. J. Anim. Ecol. 61, 619–629 (1992).

    Article  Google Scholar 

  23. Hanski, I., Turchin, P., Korpimäki, E. & Henttonen, H. Nature 364, 232–234 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Mihok, S. & Boonstra, R. Can. J. Zool. 70, 1561–1566 (1992).

    Article  Google Scholar 

  25. Stenseth, N. C. Theor. Populat. Biol. 29, 365–385 (1986).

    Article  MathSciNet  Google Scholar 

  26. Chitty, D. Can. J. Zool. 65, 2555–2566 (1987).

    Article  Google Scholar 

  27. Akçakaya, H. R. Ecol. Monogr. 62, 119–142 (1992).

    Article  Google Scholar 

  28. Hanski, I., Hansson, L. & Henttonen, H. J. Anim. Ecol. 60, 353–367 (1991).

    Article  Google Scholar 

  29. McCravy, K. W. & Rose, R. K. J. Mammal. 73, 151–159 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostffeld, R., Canham, C. & Pugh, S. Intrinsic density-dependent regulation of vole populations. Nature 366, 259–261 (1993). https://doi.org/10.1038/366259a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366259a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing