Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gamma-ray bursts as collimated jets from neutron star/black hole mergers

Abstract

THE distribution of more than 150 γ-ray bursts detected by the BATSE experiment is isotropic on the sky but radially non-uniform1,2. This raises the possibility that bursts are cosmological (at zl) and therefore very energetic events, releasing 1050 erg sr−1 on a timescale of seconds. The coalescence of two neutron stars3–7 or the accretion-induced collapse of a white dwarf8 can release up to 1053 erg in the form of neutrino-antineutrino pairs, so that the conversion of <1% into γ-rays by annihilation9 could generate γ-ray bursts, but in all such models an optically thick wind tends to form10,11, preventing the γ-rays from escaping and converting their energy into kinetic energy of the ejected material. We present here a possible solution to this difficulty. When a stellar-mass neutron star is disrupted by a black hole, it forms a thick disk which emits νν̄ pairs. These neutrinos expel a wind from the disk, but angular momentum conservation means that a clear funnel forms along the rotation axis. Neutrino annihilation within the matter-free funnel can then create γ-rays which escape to the distant observer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fishman, G. J. et al. Second Gamma Ray Observatory Science Workshop (Annapolis, Maryland, 1991).

    Google Scholar 

  2. Meegan, C. A. et al. IAU Circ. No. 5358 (1991).

  3. Paczyński, B. Astrophys. J. 308, L43–L46 (1986).

  4. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  5. Shemi, A. & Piran, T. Astrophys. J. 365, L55–L58 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Paczyński, B. in Proc. Huntsville GRO Mtg (eds Paciesas, W. S. & Fishman, G. J.) (American Institute of Physics, New York, 1992).

    Google Scholar 

  7. Piran, T., Narayan, R. & Shemi, A. in Proc. Huntsville GRO Mtg (Paciesas, W. S. & Fishman, G. J.) (in the press).

  8. Ramaty, R. & Dar, A. in Proc. COSPAR Mtg (in the press).

  9. Goodman, J., Dar, A. & Nussimov, S. Astrophys. J. 314, L7–L10 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Paczyński, B. Astrophys. J. 363, 218–226 (1990).

    Article  ADS  Google Scholar 

  11. Woosley, S. E. & Baron, E. Astrophys. J. (in the press).

  12. Goodman, J. Astrophys. J. 308, L47–L50 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Duncan, R. C., Shapiro, S. L. & Wasserman, I. Astrophys. J 309, 141–160 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Lattimer, J. M. & Schramm D. N. Astrophys. J. 192, L145–L147 (1974).

    Article  ADS  Google Scholar 

  15. Clark, J. P. A. & Eardley, D. M. Astrophys. J. 215, 311–322 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Mészáros, P. & Rees, M. J. Astrophys. J. 397, 570–575 (1992).

    Article  ADS  Google Scholar 

  17. Flammang, R. A. Mon. Not. R. astr. Soc. 199, 833–867 (1982).

    Article  ADS  Google Scholar 

  18. Higdon, J. C. & Lingenfelter, R. E. A. Rev. Astr. Astrophys. 28, 401–436 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Schaefer, B. E. et al. Astrophys. J. 393, L51–L54 (1992).

    Article  ADS  Google Scholar 

  20. Narayan, R., Paczyński, B. & Piran, T. Astrophys. J. 395, L83–L86 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Narayan, R., Piran, T. & Shemi, A. Astrophys. J. 379, L17–L20 (1991).

    Article  ADS  Google Scholar 

  22. Mao, S. & Paczyński, B. Astrophys. J. 388, L45–L48 (1992).

    Article  ADS  Google Scholar 

  23. Mészáros, P. & Rees, M. J. Astrophys. J. 397, 570; Mon. Not. R. astr. Soc. 257, 29p; 258, 41p (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochkovitch, R., Hernanz, M., Isern, J. et al. Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361, 236–238 (1993). https://doi.org/10.1038/361236a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361236a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing