Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth fact or-β2

Abstract

TRANSFORMING growth factor type β (TGF-β2)1 is a member of an expanding family of growth factors that regulate prolifer-ation and differentiation of many different cell types2,3. TGF-β2 binds to various receptors4, one of which was shown to be a serine/threonine kinase5. TGF-β2 is involved in wound healing6, bone formation7 and modulation of immune functions8. We report here the crystal structure of TGF-β2 at 2.2 Å resolution, which reveals a novel monomer fold and dimer association. The monomer consists of two antiparallel pairs of β-strands forming a flat curved surface and a separate, long α-helix. The disulphide-rich core has one disulphide bond pointing through a ring formed by the sequence motifs Cys-Ala-Gly-Ala-Cys and Cys-Lys-Cys, which are themselves connected through the cysteines. Two monomers are connected through a single disulphide bridge and associate such that the helix of one subunit interacts with the concave β-sheet surface of the other. Four exposed loop regions might determine receptor specificity. The structure provides a suitable model for the TGF-βs and other members of the super-family9–11 and is the basis for the analysis of the TGF-β2 interactions with the receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheifetz, S. et al. Cell 48, 409–415 (1987).

    Article  CAS  Google Scholar 

  2. Roberts, A. B. & Sporn, M. B. Adv. Cancer Res. 51, 107–145 (1988).

    Article  CAS  Google Scholar 

  3. Massagué, J. A. Rev. Cell Biol. 6, 597–641 (1990).

    Article  Google Scholar 

  4. Cheifetz, S. & Massagué, J. J. biol. Chem. 266, 20767–20772 (1991).

    CAS  PubMed  Google Scholar 

  5. Lin, H. Y., Wang, X.-F., Ng-Eaton, E., Weinberg, R. A. & Lodish, H. F. Cell 68, 775–785 (1992).

    Article  CAS  Google Scholar 

  6. Cox, D. A., Kunz, S., Cerletti, N., McMaster, G. K. & Bürk, R. R. in Angiogenesis: Key Principles, Science, Technology, Medicine (eds Steiner, R., Weisz, B. & Langer, R.) 287–295 (Birkhäuser, Basel, Switzerland, 1992).

    Book  Google Scholar 

  7. Joyce, M. E., Roberts, A. B., Sporn, M. B. & Bolander, M. E. J. Cell Biol. 110, 2195–2207 (1990).

    Article  CAS  Google Scholar 

  8. Wrann, M. et al. EMBO J. 6, 1633–1636 (1987).

    Article  CAS  Google Scholar 

  9. Mason, A. J. et al. Nature 318, 659–663 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Wozney, J. M. et al. Science 242, 1528–1534 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Wozney, J. M. Prog. Growth Factor Res. 1, 267–280 (1989).

    Article  CAS  Google Scholar 

  12. Schlunegger, M. P. et al. FEBS Lett. 303, 91–93 (1992).

    Article  CAS  Google Scholar 

  13. Tamaoki, H. et al. Prot. Engng. 4, 509–518 (1991).

    Article  CAS  Google Scholar 

  14. Rees, D. C. & Lipscomb, W. N. Proc. natn. Acad. Sci. U.S.A. 77, 4633–4637 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Janin, J. & Wodak, S. J. molec. Biol. 125, 357–386 (1978).

    Article  CAS  Google Scholar 

  16. Ogawa, Y. et al. J. biol. Chem. 267, 2325–2328 (1992).

    CAS  PubMed  Google Scholar 

  17. Wang, X.-F. et al. Cell 67, 797–805 (1991).

    Article  CAS  Google Scholar 

  18. Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  19. Wang, B.-C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  20. Ikeda, T., Lioubin, M. N. & Marquardt, H. Biochemistry 26, 2406–2410 (1987).

    Article  CAS  Google Scholar 

  21. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1987).

    Article  Google Scholar 

  22. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  23. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta Crystallogr. A43, 489–451 (1987).

    Article  Google Scholar 

  24. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  25. Lee, S.-J. Molec. Endocrin. 4, 1034–1040 (1990).

    Article  CAS  Google Scholar 

  26. Wharton, K. A., Thomson, G. H. & Gelbart, W. M. Proc. natn. Acad. Sci. U.S.A. 88, 9214–9218 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlunegger, M., Grütter, M. An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth fact or-β2. Nature 358, 430–434 (1992). https://doi.org/10.1038/358430a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358430a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing