Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Can accretion onto isolated neutron stars produce γ-ray bursts?

Abstract

THE isotropy and flat count spectrum of γ-ray bursts revealed by the BATSE detector on the Compton Gamma-Ray Observatory1 have led to suggestions that the burst sources are an extended galactic halo of high-velocity neutron stars2,3We show here that if slow accretion onto these neutron stars from the interstellar medium is to be the origin of γ-ray bursts, the accretion physics is very different from what applies for local, low-velocity neutron stars4,5. For halo neutron stars with high magnetic fields and velocities (v > 190 km s–1), electromagnetic dipole radiation pressure prevents accretion unless the period is longer than tens of seconds; the centrifugal barrier will then prevent accretion until the period reaches several thousand seconds. For periods as long as this, accretion may proceed through Kelvin–Helmholtz instability at the magnetopause boundary. At interstellar densities and neutron-star magnetic fields of 1012 G, the accretion rate by this process can be much larger than the Bondi–Hoyle (hydrodynamic) accretion rate, but is still well below what is needed for slow-accretion burst models. We conclude that slow accretion onto high-velocity neutron stars in the halo cannot be the origin ofγ-ray bursts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meegan, C. A. et al. Nature 355, 143 (1992).

    Article  ADS  Google Scholar 

  2. Hartmann, D. Nature (submitted).

  3. Dermer, C. D. & Li, H. in Proc. Huntsville Gamma-Ray Burst Workshop (eds Paciesas, W. S. & Fishman, G. J. (in the press).

  4. Hameury, J. M., Bonazzola, S., Heyvaerts, J. & Ventura, J. Astr. Astrophys. 111, 242 (1982).

    ADS  CAS  Google Scholar 

  5. Blaes, O. R., Blandford, R. D., Madau, P. & Koonin, S. Astrophys. J. 363, 612–627 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Woosley, S. E. & Taam, R. E. Nature 263, 101 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Blaes, O. & Rajagopal, M. Astrophys. J. 381, 210–219 (1991).

    Article  ADS  Google Scholar 

  8. Blaes, O., Blandford, R., Goldreich, P. & Madau, P. Astrophys. J. 343, 839 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Kluzniak, W. & Ruderman, M. in Proc. of Huntsville Gamma-Ray Burst Workshop (eds Paciesas, W. S. & Fishman, G. J. (in the press).

  10. Blaes, O., Blandford, R., Madau, P. & Yang, L. Astrophys. J. (submitted).

  11. Harrison, P. A., Lyne, A. G. & Anderson, B. in NATO ARW on X-ray Binaries and the Formation of Binary and Millisecond Pulsars (eds van den Heuvel, E. J. P. & Rappaport, S. J. (Kluwer, Dordrecht, in the press).

  12. Narayan, R. & Ostriker, J. P. Astrophys. J. 352, 222 (1990).

    Article  ADS  Google Scholar 

  13. Reynolds, R. J. in The Interstellar Disk-Halo Connection in Galaxies (ed. Bloemen, H.) 67–76 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  14. Ruderman, M. A., Shaham, J. & Tavani, M. Astrophys. J. 336, 507 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harding, A. K. & Gaisser, T. K. Astrophys. J. 358, 561–574 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Mineshige, S., Rees, M. J. & Fabian, A. C. Mon. Not. R. astr. Soc. 251, 555–563 (1991).

    Article  ADS  Google Scholar 

  17. Illarionov, A. F. & Sunyaev, R. A. Astr. Astrophys. 39, 185–195 (1975).

    ADS  Google Scholar 

  18. Davies, R. E., Fabian, A. C. & Pringle, J. E. Mon. Not. R. astr. Soc. 186, 779–782 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Alcock, C. & Illarionov, A. Astrophys. J. 235, 541–553 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Burnard, D. J., Lea, S. M. & Arons, J. Astrophys. J. 266, 174–187 (1983).

    Article  ADS  Google Scholar 

  21. Lasota, J. P. in Gamma-Ray Bursts (eds Ho, C. Epstein, R. I, & Fenimore, E. E.) 17 (Cambridge Univ. Press, 1992).

    Google Scholar 

  22. Murakami, T. et al. Nature 335, 234 (1988).

    Article  ADS  Google Scholar 

  23. Silk, J. Phys. Rep. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, A., Leventhal, M. Can accretion onto isolated neutron stars produce γ-ray bursts?. Nature 357, 388–389 (1992). https://doi.org/10.1038/357388a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357388a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing