Abstract
MANY astrophysical magnetic fields are thought to arise by dynamo action due to internal fluid motions, but the natural timescale for magnetic field growth is the diffusion timescale, which in realistic astrophysical applications is very large1. A fast dynamo is one that operates on the much shorter turnover timescale of the generating fluid flow, and the analytical intractability of smooth flows with diffusion has prompted the use of many ingenious models2–10, differing from the true problem in having a modified or time-dependent diffusion or singularities in the flow field. Here we adopt a straightforward approach and present numerical computations of linear kinematic dynamos associated with periodic smooth flows, with diffusion explicitly included. Examples of time-varying flows depending on two spatial coordinates give convincing evidence of fast dynamo action for diffusion times up to 10,000 times greater than the turnover time. A three-dimensional steady flow shows similar behaviour, although computations have not beencarried out so far and the asymptotic behaviour is less clear. All these flows have large regions where particle paths are chaotic.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zel'dovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).
Bayly, B. J. & Childress, S. Geophys. astrophys. Fluid Dyn. 44, 211–240 (1988).
Finn, J. M., Hanson, J. D., Kan, I. & Ott, E. Phys. Rev. Lett. 62, 2965–2968 (1989).
Gilbert, A. D. Geophys. astrophys. Fluid Dyn. 44, 214–258 (1988).
Soward, A. M. J. Fluid Mech. 180, 267–295 (1987).
Finn, J. M., Hanson, J. D., Kan, I. & Ott, E. Physics Fluids B3, 1250–1269 (1991).
Gilbert, A. D. Nature 350, 483–485 (1991).
Gilbert, A. D. Phil. Trans. R. Soc. (submitted).
Klapper, I. J. Fluid Mech. (in the press).
Childress, S. Fast Dynamo Theory, Proc. Workshop on Topological Fluid Dynamics, Santa Barbara (eds Moffatt, H. K. & Tabor, M.) (in the press).
Moffatt, H. K. Magnetic Field Generation in Electrically conducting Fluids (Cambridge University Press, 1978).
Roberts, P. H. & Soward, A. M. A. Rev. Fluid Mech. 24, 459–512 (1992).
Arnold, V. I., Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. Zh. éksp. teor. Fiz. 81, 2052–2058 (1981); (Engl. transl.) Sov. Phys. JETP 54, 1083–1086 (1981).
Otani, N. Eos (abstr.) 69, 1366 (1989).
Arnold, V. I. C.R. hebd. Séanc. Acad. Sci., Paris 261, 17–20 (1965).
Hénon, M. C.R. hebd. Séanc. Acad. Sci., Paris 262, 312–314 (1966).
Dombre, T. et al. J. Fluid Mech. 167, 353–391 (1986).
Arnold, V. I. & Korkina, E. I. Vest. Mosk. Un. Ta. Ser. 1. Math. Mec. 3, 43–46 (1983).
Galloway, D. J. & Frisch, U. Geophys. astrophys. Fluid Dyn. 36, 53–83 (1986).
Vishik, M. M. Geophys. astrophys. Fluid Dyn. 48, 151–167 (1989).
Moffatt, H. K. & Proctor, M. R. E. J. Fluid Mech. 154, 493–507 (1985).
Proctor, M. R. E. & Weiss, N. O. Rep. Prog. Phys. 45, 1317–1379 (1982).
Childress, S. Phys. Earth planet. Inter. 20, 172–180 (1979).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Galloway, D., Proctor, M. Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691–693 (1992). https://doi.org/10.1038/356691a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/356691a0