Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Softening of nanocrystalline metals at very small grain sizes

Abstract

Nanocrystalline solids, in which the grain size is in the nanometre range, often have technologically interesting properties such as increased hardness and ductility. Nanocrystalline metals can be produced in several ways, among the most common of which are high-pressure compaction of nanometre-sized clusters and high-energy ball-milling1,2,3,4. The result is a polycrystalline metal with the grains randomly orientated. The hardness and yield stress ofthe material typically increase with decreasing grain size, a phenomenon known as the Hall–Petch effect5,6. Here we present computer simulations of the deformation of nanocrystalline copper, which show a softening with grain size (a reverse Hall–Petch effect3,7) for the smallest sizes. Most of the plastic deformation is due to a large number of small ‘sliding’ events of atomic planes at the grain boundaries, with only a minor part being caused by dislocation activity in the grains; the softening that we see at small grain sizes is therefore due to the larger fraction of atoms at grain boundaries. This softening will ultimately impose a limit on how strong nanocrystalline metals may become.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simulated nanocrystalline copper sample before (a) and after (b) 10% deformation.
Figure 2: The effect of grain size on deformation.
Figure 3: Snapshot of grain structure, displacements and stresses at 8% deformation.

Similar content being viewed by others

References

  1. Siegel, R. W. in Encyclopedia of Applied PhysicsVol. 11, 173–199 (VCH, New York, 1994).

    Google Scholar 

  2. Siegel, R. W. What do we really know about the atomic-scale structure of nanophase materials? J. Phys. Chem. Solids 55, 1097–1106 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Siegel, R. W. & Fougere, G. E. in Nanophase Materials: Synthesis — Properties — Applications (eds Hadjipanayis, G. C. & Siegel, R. W.) 233–261 (NATO-ASI Ser. E, Vol. 260, Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  4. Gleiter, H. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures (ed. Nastasi, M.) 3–35 (Kluwer, Dordrecht, 1993).

    Book  Google Scholar 

  5. Hall, E. O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951).

    Article  ADS  Google Scholar 

  6. Petch, N. J. The cleavage of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  7. Chokshi, A. H., Rosen, A., Karch, J. & Gleiter, H. On the validity of the Hall–Petch relationship in nanocrystalline materials. Scripta Metall. 23, 1679–1684 (1989).

    Article  CAS  Google Scholar 

  8. Voronoi, G. Z. Reine Angew. Math. 134, 199 (1908).

    Google Scholar 

  9. Jacobsen, K. W., Nørskov, J. K. & Puska, M. J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 35, 7423–7442 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Jacobsen, K. W., Stoltze, P. & Nørskov, J. K. Asemi-empirical effective medium theory for metals and alloys. Surf. Sci. 366, 394–402 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Jónsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard–Jones liquid and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).

    Article  ADS  Google Scholar 

  12. Clarke, A. S. & Jónsson, H. Structural changes accompanying densification of random-sphere packings. Phys. Rev. E 47, 3975–3984 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Gschneidner, K. A. Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275–426 (1964).

    Article  CAS  Google Scholar 

  14. Shen, T. D., Koch, C. C., Tsui, T. Y. & Pharr, G. M. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying. J. Mater. Res. 10, 2892–2896 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Kluge, M. D., Wolf, D., Lutsko, J. F. & Phillpot, S. R. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation. J. Appl. Phys. 67, 2370–2379 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Phillpot, S. R., Wolf, D. & Gleiter, H. Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material. J. Appl. Phys. 78, 847–860 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Chokshi, A. H., Mukherjee, A. K. & Langdon, T. G. Superplasticity in advanced materials. Mater. Sci. Eng. R 10, 237–274 (1993).

    Article  CAS  Google Scholar 

  18. Ridley, N. (ed.) Superplasticity: 60 years after Pearson (Institute of Metals, London, 1995).

    Google Scholar 

  19. Nieman, G. W., Weertman, J. R. & Siegel, R. W. Mechanical behavior of nanocrystalline Cu and Pd. J.Mater. Res. 6, 1012–1027 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Nieh, T. G. & Wadsworth, J. Hall–Petch relation in nanocrystalline solids. Scripta Met. Mater. 25, 955–958 (1991).

    Article  CAS  Google Scholar 

  21. Lian, J., Baudelet, B. & Nazarov, A. A. Model for the prediction of the mechanical behaviour of nanocrystalline materials. Mater. Sci. Eng. A 172, 23–29 (1993).

    Article  Google Scholar 

  22. Langdon, T. G. The significance of grain boundaries in the flow of polycrystalline materials. Mater. Sci. Forum 189–190;31–42 (1995).

    Article  Google Scholar 

  23. Suryanarayanan, R. et al. Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. J. Mater. Res. 11, 439–448 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Weertman, J. R. Hall–Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 166, 161–167 (1993).

    Article  Google Scholar 

  25. Van Swygenhoven, H. & Caro, A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71, 1652–1654 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. K. Nørskov, T. Leffers, O. B. Pedersen, A. E. Carlsson and J. P. Sethna for discussions. The Center for Atomic-scale Materials Physics is sponsored by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Schiøtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiøtz, J., Di Tolla, F. & Jacobsen, K. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998). https://doi.org/10.1038/35328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35328

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing