Abstract
THE forces between colloidal particles dominate the behaviour of a great variety of materials, including paints, paper, soil, clays and (in some circumstances) cells. Here we describe the use of the atomic force microscope to measure directly the force between a planar surface and an individual colloid particle. The particle, a silica sphere of radius 3.5 µm, was attached to the force sensor in the microscope and the force between the particle and the surface was measured in solutions of sodium chloride. The measurements are consistent with the double-layer theory1,2 of colloidal forces, although at very short distances there are deviations that may be attributed to hydration forces3–6 or surface roughness, and with previous studies on macroscopic systems4–6. Similar measurements should be possible for a wide range of the particulate and fibrous materials that are often encountered in industrial contexts, provided that they can be attached to the microscope probe.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Derjaguin, B. & Landau, L. Acta Physiochem. 14, 633 (1941).
Verwey, E. G. W. & Overbeck, J. J. G. Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
Proc. Nobel Conf. Hydration Forces and Molecular Aspects of Solvation Chem. Scr. 25, 3–31 (1985).
Horn, R. G., Smith, D. T. & Haller, W. Chem. Phys. Lett. 162, 404–408 (1989).
Rabinovich, I., Derjaguin, B. V. & Churaev, N. V. Adv. Colloid Interf. Sci. 16, 63–78 (1982).
Peschel, G., Belouschek, P., Muller, M. M., Muller, M. R. & Konig, R. Colloid Polym. Sci. 260, 444–451 (1982).
Israelachvili, J. N. & Adams, G. E. JCS Faraday Trans. I 74, 975–1001 (1978).
Horn, R. G. & Israelachvili, J. N. Chem. Phys. Lett. 71, 192–194 (1980).
Pashley, R. M. J. Colloid Interf. Sci. 83, 531–546 (1981).
Pashley, R. M., McGuiggan, P. M., Ninham, B. W. & Evans, D. F. Science 229, 1088–1089 (1985).
Ottewill, R. H. Concentrated Dispersions in Colloid Dispersions Ch. 9 (ed. Goodwin, J. W.) (Royal Society of Chemistry, London, 1982).
Ellmelech, M. JCS Faraday Trans. I 86, 1623–1624 (1990). Zhenge, X. & Yoon, R. J. Colloid Interf. Sci. 134, 427–434 (1990).
Brown, M. A. & Staples, E. J. Langmuir 6, 1260–1265 (1990). Prieve, D. C. & Freij, N. A. Langmuir 6, 396–403 (1990).
Binnig, G. & Rohrer, H. Helv. Phys. Acta 55, 726–735 (1982).
Binnig, G., Quate, C. F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).
Martin, Y., Williams, C. & Wickramasinghe, H. J. appl. Phys. 61, 4223–4229 (1987).
Burnham, N. A. & Colten, R. J. J. Vac. Sci. Technol. A7, 2906–2913 (1989).
Ducker, W. A. & Cook, R. F. Appl. Phys. Lett. 56, 2048–2410 (1990).
Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R. & Quate, C. F. Appl. Phys. Lett. 54, 2691–2653 (1989).
Wiese, G. R., James, R. O. & Healy, T. W. Disc. Faraday Soc. 52, 302–311 (1975).
Chan, D. Y. C. & Horn, R. G. J. chem. Phys. 83, 5311–5324 (1990).
Parker, J. L., Christenson, H. K. & Ninham, B. W. Rev. sci. Instrum. 60, 3135–3138 (1989).
Meyer, G. & Amer, N. M. Appl. Phys. Lett. 53, 1045–1047 (1988).
Derjaguin, B. V. Kolloid. Zh. 69, 155–164 (1934).
Hunter, R. J. Foundations of Colloid Science, 222 (Clarendon, Oxford, 1987).
Chan, D. Y. C., Pashley, R. M. & White, L. R. J. Coll. Inter. Sci. 77, 283 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ducker, W., Senden, T. & Pashley, R. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991). https://doi.org/10.1038/353239a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/353239a0