Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large differences in the helix propensities of alanine and glycine

Abstract

THE standard view of a helix formation in water, based on helix propensities determined by the host–guest method1,2, is that differences in helix propensity among the amino acids are small, except for proline3, and that the average value of the helix propaga-tion parameter s is near 1. A contradictory view of α helix formation in water is emerging from substitution experiments with short, unique-sequence peptides that contain only naturally occurring amino acids4–9. Short peptides that contain only alanine and lysine, or alanine and glutamate, form surprisingly stable monomeric helices in water9 and substitution of a single alanine residue by another amino acid in these or related peptides produces a wide range of changes in helix content, depending on which amino acid is substituted for alanine4–6,8. We show here that the ratio of the helix propensities of alanine to glycine is large, about 100, in substitution experiments with a 17-residue reference peptide containing alanine and lysine. The helix propensity is identified with s, the helix propagation parameter of the statistical mechanics model for α helix formation, and the results are interpreted by the Lifson–Roig theory10. Single alanine → glycine substitutions have been made at a series of positions in individual peptides. The helix-destabilizing effect of an Ala → Gly substitution depends strongly on its position in the helix, as predicted by the Lifson–Roig theory if the ratio of s values for Ala: Gly is large.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sueki, M. et al. Macromolecules 17, 148–155 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Scheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 82, 5585–5587 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Altmann, K.-H., Wójcik, J., Vasquez, M. & Scheraga, H. A. Biopolymers 30, 107–120 (1990).

    Article  CAS  Google Scholar 

  4. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T. M. & Baldwin, R. L. Nature 344, 268–270 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Merutka, G., Lipton, W., Shalongo, W., Park, S.-H. & Stelllwagen, E. Biochemistry 29, 7511–7515 (1990).

    Article  CAS  Google Scholar 

  6. Lyu, P. C., Liff, M. I., Marky, L. A. & Kallenbach, N. R. Science 250, 669–673 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Strehlow, K. G. & Baldwin, R. L. Biochemistry 28, 2130–2133 (1989).

    Article  CAS  Google Scholar 

  8. O'Neil, K. T. & DeGrado, W. F. Science 250, 646–651 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Marqusee, S., Robbins, V. H. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Lifson, S. & Roig, A. J.chem. Phys. 34, 1963–1974 (1961).

    Article  ADS  CAS  Google Scholar 

  11. Zimm, B. H. & Bragg, J. K. J. chem. Phys. 31, 526–535 (1959).

    Article  ADS  CAS  Google Scholar 

  12. Lotan, N., Yaron, A. & Berger, A. Bipolymers 4, 365–368 (1966).

    Article  CAS  Google Scholar 

  13. Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M. & Baldwin, R. L. Nature 326, 563–567 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Creighton, T. E. Proteins 162–170 (Freeman, New York, 1983).

    Google Scholar 

  15. Brant, D. A., Miller, W. G. & Flory, P. J. molec. Biol. 23, 47–65 (1967).

    Article  CAS  Google Scholar 

  16. Gō, M., Gō, N. & Scheraga, H. A. J. chem. Phys. 54, 4489–4503 (1971).

    Article  ADS  Google Scholar 

  17. Houghten, R. A., DeGraw, S. T., Bray, M. K., Hoffman, S. R. & Frizzell, N. D. Biotechniques 4, 522–528 (1986).

    CAS  Google Scholar 

  18. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry Vol. III (Freeman, New York, 1980).

    Google Scholar 

  19. Poland, D. & Scheraga, H. A. Theory of Helix-Coil Transitions in Biopolymers (Academic, New York, 1970).

    Google Scholar 

  20. Chen, Y.-H., Yang, J.-T. & Chau, K. H. Biochemistry 13, 3350–3359 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabartty, A., Schellman, J. & Baldwin, R. Large differences in the helix propensities of alanine and glycine. Nature 351, 586–588 (1991). https://doi.org/10.1038/351586a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351586a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing