Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rho-family GTPases in cadherin-mediated cell — cell adhesion

Key Points

  • Cell?cell adhesions are rearranged dynamically during a wide range of physiological processes, such as tissue development and tumour metastasis.

  • Cadherins are an important group of cell?cell adhesion molecules that mediate adhesion by Ca2+-dependent homophilic interactions.

  • Recently, Rho-family GTPases, including RhoA, Rac1, and Cdc42, have emerged as key regulators of cadherin-mediated cell?cell adhesion.

  • Evidence indicates that Rho GTPases could influence cadherin-mediated cell?cell adhesion in many ways, for example by directly acting on components of the E-cadherin?β-catenin?α-catenin complex, recycling E-cadherin back to the cell surface after endocytosis and promoting E-cadherin cleavage by acting on a metalloproteinase.

  • p120ctn can modulate the activities of Rho GTPases, which leads to morphological change and increased cell migration. Tyrosine phosphorylaton of β-catenin, p120ctn and E-cadherin is thought to be involved in the regulation of cadherin-mediated cell?cell adhesion. As crosstalk occurs between Rho GTPases and tyrosine kinases during formation of integrin-mediated cell?substratum adhesions, it is possible that Rho GTPases might also participate in the signalling pathway between the cadherin?catenin complex and tyrosine kinases.

  • Studies have suggested that regulation of cadherin adhesion by Rho GTPases is important during synaptogenesis and synaptic plasticity in neuronal cells as well as epithelial cells. It is also conceivable that the dysregulation of this mechanism could be a cause of tumour metastasis.

Abstract

Cell?cell adhesions are rearranged dynamically during tissue development and tumour metastasis. Recently, Rho-family GTPases, including RhoA, Rac1 and Cdc42, have emerged as key regulators of cadherin-mediated cell?cell adhesion. Following the identification and characterization of regulators and effectors of Rho GTPases, signal transduction pathways from cadherin to Rho GTPases and, in turn, from Rho GTPases to cadherin, are beginning to be clarified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic rearrangements of cell?cell adhesion.
Figure 2: Cadherin-mediated cell?cell adhesion.
Figure 3: Regulation of Rho-family GTPases.
Figure 4: Role of IQGAP1 in the regulation of E-cadherin-mediated cell?cell adhesion.
Figure 5: Possible modes of action of Rho GTPases in the regulation of E-cadherin-mediated cell?cell adhesion.
Figure 6: Mode of activation of Rac1 by the formation of E-cadherin-mediated cell?cell adhesion.
Figure 7: Hypothetical model for the roles of p120ctn in the modulation of Rho GTPase activity.

Similar content being viewed by others

References

  1. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619?627 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, C. L. & Nelson, W. J. Cytomechanics of cadherin-mediated cell?cell adhesion. Curr. Opin. Cell Biol. 10, 572?577 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399?404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tepass, U., Truong, K., Godt, D., Ikura, M. & Peifer, M. Cadherins in embryonic and neural morphogenesis. Nature Rev. Mol. Cell Biol. 1, 91?100 (2000).

    Article  CAS  Google Scholar 

  5. Tsukita, S., Tsukita, S., Nagafuchi, A. & Yonemura, S. Molecular linkage between cadherins and actin filaments in cell?cell adherens junctions. Curr. Opin. Cell Biol. 4, 834?839 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell?cell adhesion. Cell 100, 209?219 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ochiai, A. et al. Frequent loss of α-catenin expression in scirrhous carcinomas with scattered cell growth. Jpn. J. Cancer Res. 85, 266?273 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. Induction of polarized cell?cell association and retardation of growth by activation of the E-cadherin?catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127, 247?256 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Sako, Y., Nagafuchi, A., Tsukita, S., Takeichi, M. & Kusumi, A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J. Cell Biol. 140, 1227?1240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169?1180 (2000).

    CAS  PubMed  Google Scholar 

  11. Steinberg, M. S. & McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11, 554?560 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Nagafuchi, A., Ishihara, S. & Tsukita, S. The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin?α-catenin fusion molecules. J. Cell Biol. 127, 235?245 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141, 779?789 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aono, S., Nakagawa, S., Reynolds, A. B. & Takeichi, M. p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145, 551?562 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signalling and cancer. J. Cell Sci. 113, 1319?1334 (2000).

    CAS  PubMed  Google Scholar 

  16. Thoreson, M. A. et al. Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J. Cell Biol. 148, 189?202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zondag, G. C. et al. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial?mesenchymal transition. J. Cell Biol. 149, 775?782 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaibuchi, K., Kuroda, S. & Amano, M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459?486 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gulli, M. P. & Peter, M. Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes Dev. 15, 365?379 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Van Aelst, L. & d'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295?2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509?514 (1998).These reviews (References 18, 20 and 21 ) summarize how the Rho-family GTPases regulate various cellular processes, such as cytoskeletal dynamics, cell adhesion and gene transcription.

    Article  CAS  PubMed  Google Scholar 

  22. Fleming, I. N., Elliott, C. M. & Exton, J. H. Differential translocation of Rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J. Biol. Chem. 271, 33067?33073 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kranenburg, O., Poland, M., Gebbink, M., Oomen, L. & Moolenaar, W. H. Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J. Cell Sci. 110, 2417?2427 (1997).

    CAS  PubMed  Google Scholar 

  24. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. & Takai, Y. Regulation of cell?cell adhesion by Rac and Rho small G proteins in MDCK cells. J. Cell Biol. 139, 1047?1059 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuroda, S. et al. Regulation of cell?cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem. Biophys. Res. Commun. 240, 430?435 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Jou, T. S. & Nelson, W. J. Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142, 85?100 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N. & Kaibuchi, K. Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell?cell adhesion sites. J. Cell Sci. 114, 1829?1838 (2001).References 27, 66 and 71 show that E-cadherin-mediated cell?cell adhesion leads to the rapid activation of Rac1 or Cdc42.

    CAS  PubMed  Google Scholar 

  28. Akhtar, N. & Hotchin, N. A. RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol. Biol. Cell 12, 847?862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8?13 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kawajiri, A. et al. Identification of a novel β-catenin-interacting protein. Biochem. Biophys. Res. Commun. 273, 712?717 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Dobrosotskaya, I. Y. & James, G. L. MAGI-1 interacts with β-catenin and is associated with cell?cell adhesion structures. Biochem. Biophys. Res. Commun. 270, 903?909 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ide, N. et al. Interaction of S-SCAM with neural plakophilin-related Armadillo-repeat protein/δ-catenin. Biochem. Biophys. Res. Commun. 256, 456?461 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Perego, C., Vanoni, C., Massari, S., Longhi, R. & Pietrini, G. Mammalian LIN-7 PDZ proteins associate with β-catenin at the cell?cell junctions of epithelia and neurons. EMBO J. 19, 3978?3989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michiels, F., Habets, G. G., Stam, J. C., van der Kammen, R. A. & Collard, J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338?340 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Hoshino, M. et al. Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J. Biol. Chem. 274, 17837?17844 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J. S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868?5879 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kourlas, P. J. et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc. Natl Acad. Sci. USA 97, 2145?2150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taya, S. et al. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J. Cell Biol. (in the press).

  39. Braga, V., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell?cell contacts. J. Cell Biol. 137, 1421?1431 (1997).This paper first documented that the Rho-family GTPases, Rac1 and RhoA, are required for cadherin-mediated cell?cell adhesion in cultured cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braga, V. M., Del Maschio, A., Machesky, L. & Dejana, E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol. Biol. Cell 10, 9?22 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kodama, A., Takaishi, K., Nakano, K., Nishioka, H. & Takai, Y. Involvement of Cdc42 small G protein in cell?cell adhesion, migration and morphology of MDCK cells. Oncogene 18, 3996?4006 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Hordijk, P. L. et al. Inhibition of invasion of epithelial cells by Tiam1?Rac signaling. Science 278, 1464?1466 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Fukata, M. et al. Cdc42 and Rac1 regulate the interaction of IQGAP1 with β-catenin. J. Biol. Chem. 274, 26044?26050 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell?cell adhesion. Science 281, 832?835 (1998).This paper showed for the first time how Rac1 and Cdc42 regulate E-cadherin-mediated cell?cell adhesion. IQGAP1, an effector of Rac1 and Cdc42, negatively regulates E-cadherin-mediated cell?cell adhesion through dissociation of α-catenin from the cadherin?catenin complex.

    Article  CAS  PubMed  Google Scholar 

  45. Li, Z., Kim, S. H., Higgins, J. M., Brenner, M. B. & Sacks, D. B. IQGAP1 and calmodulin modulate E-cadherin function. J. Biol. Chem. 274, 37885?37892 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Kaibuchi, K., Kuroda, S., Fukata, M. & Nakagawa, M. Regulation of cadherin-mediated cell?cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol. 11, 591?596 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Fukata, M. et al. Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell?cell dissociation during cell scattering. Mol. Cell. Biol. 21, 2165?2183 (2001).This study showed that regulation of the Rac1?Cdc42?IQGAP1 system is involved in cell?cell dissociation during cell scattering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maeno, Y. et al. α-catenin-deficient F9 cells differentiate into signet ring cells. Am. J. Pathol. 154, 1323?1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, S., Wang, Q., Chakladar, A., Bronson, R. T. & Bernards, A. Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol. Cell. Biol. 20, 697?701 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brill, S. et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell. Biol. 16, 4869?4878 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugimoto, N. et al. IQGAP1, a negative regulator of cell?cell adhesion, is upregulated by gene amplification at 15q26 in gastric cancer cell lines HSC39 and 40A. J. Hum. Genet. 46, 21?25 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Takemoto, H. et al. Localization of IQGAP1 is inversely correlated with intercellular adhesion mediated by E-cadherin in gastric cancers. Int. J. Cancer 91, 783?788 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Le, T. L., Yap, A. S. & Stow, J. L. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219?232 (1999).The amounts of E-cadherin on the cell surface are regulated by endocytosis and exocytosis. The amounts of transported E?cadherin depend on cell confluency.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamei, T. et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell?cell adhesion in MDCK cells ? regulation by Rho, Rac and Rab small G proteins. Oncogene 18, 6776?6784 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ellis, S. & Mellor, H. Regulation of endocytic traffic by Rho family GTPases. Trends Cell Biol. 10, 85?88 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Lamaze, C., Chuang, T. H., Terlecky, L. J., Bokoch, G. M. & Schmid, S. L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382, 177?179 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Braga, V. M., Betson, M., Li, X. & Lamarche-Vane, N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell?cell adhesion in normal human keratinocytes. Mol. Biol. Cell 11, 3703?3721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blobel, C. P. Remarkable roles of proteolysis on and beyond the cell surface. Curr. Opin. Cell Biol. 12, 606?612 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ito, K. et al. Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of β-catenin from cell?cell contacts. Oncogene 18, 7080?7090 (1999).This study showed that the ectodomain of E-cadherin is cleaved by some types of metalloproteinase.

    Article  CAS  PubMed  Google Scholar 

  60. Guo, Y. J. et al. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer. Cancer Res. 54, 422?426 (1994).

    CAS  PubMed  Google Scholar 

  61. Katayama, M. et al. Soluble E-cadherin fragments increased in circulation of cancer patients. Br. J. Cancer 69, 580?585 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okamoto, I. et al. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J. Biol. Chem. 274, 25525?25534 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Kawano, Y. et al. Ras oncoprotein induces CD44 cleavage through phosphoinositide 3-OH kinase and the Rho family of small G proteins. J. Biol. Chem. 275, 29628?29635 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Zhuge, Y. & Xu, J. Rac1 mediates type I collagen-dependent MMP-2 activation. J. Biol. Chem. 276, 16248?16256 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863?1871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, S. H., Li, Z. & Sacks, D. B. E-cadherin-mediated cell?cell attachment activates Cdc42. J. Biol. Chem. 275, 36999?37005 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Pece, S., Chiariello, M., Murga, C. & Gutkind, J. S. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell?cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 274, 19347?19351 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Espada, J., Perez-Moreno, M., Braga, V. M., Rodriguez-Viciana, P. & Cano, A. H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of β-catenin in epidermal keratinocytes. J. Cell Biol. 146, 967?980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kotani, K. et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J. 13, 2313?2321 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829?1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 16, 33305?33308 (2001).

    Article  Google Scholar 

  72. Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640?648 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201?1211 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009?1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333?337 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nature Cell Biol. 2, 637?644 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567?580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grosheva, I., Shtutman, M., Elbaum, M. & Bershadsky, A. D. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell?cell contact formation and regulation of cell locomotion. J. Cell Sci. 114, 695?707 (2001).A series of papers (references 76, 77 and 78 ) show that p120ctn modulates the activity of the Rho-family GTPases, and that E-cadherin expression inhibits these actions.

    CAS  PubMed  Google Scholar 

  79. Daniel, J. M. & Reynolds, A. B. Tyrosine phosphorylation and cadherin?catenin function. Bioessays 19, 883?891 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Behrens, J. et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin?β-catenin complex in cells transformed with a temperature-sensitive v-src gene. J. Cell Biol. 120, 757?766 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Calautti, E. et al. Tyrosine phosphorylation and src family kinases control keratinocyte cell?cell adhesion. J. Cell Biol. 141, 1449?1465 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schoenwaelder, S. M. & Burridge, K. Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11, 274?286 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175?185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8?14 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723?729 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536?1541 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489?498 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948?4956 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol. 2, 797?804 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913?917 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Clayton, L., Hall, A. & Johnson, M. H. A role for Rho-like GTPases in the polarisation of mouse eight-cell blastomeres. Dev. Biol. 205, 322?331 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Sugihara, K. et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427?3433 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173?180 (2000).

    Article  CAS  Google Scholar 

  94. Sone, M. et al. Still life, a protein in synaptic terminals of Drosophila homologous to GDP?GTP exchangers. Science 275, 543?547 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Sone, M. et al. Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 127, 4157?4168 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Takeichi (Kyoto University) for critical reading and helpful discussion on the manuscript and A. Hall (University College London), J. G. Collard (The Netherlands Cancer Institute), K. Burridge (University of North Carolina), D. B. Sacks (Brigham and Women's Hospital and Harvard Medical School), N. A. Hotchin (University of Birmingham), A. B. Reynolds (Vanderbilt University), L. Y. Bourguignon (University of Miami), H. Saya (Kumamoto University) and A. D. Bershadsky (The Weizmann Institute of Science) for sending a preprint of work in press. We also thank S. Kuroda, M. Nakagawa, N. Itoh, M. Yamaga and the members of our laboratory for preparing the manuscript. The original work by the authors was supported by grants-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture of Japan and by grants from Research for the Future of the Japan, Society for the Promotion of Science and Kirin Brewery Company Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Kaibuchi.

Related links

Related links

DATABASES

Interpro:

cadherin domain

SH2

SH3

 LocusLink:

Ack

α-catenin

Cdc42

citron

E-cadherin

EGFR

Fer

KIAA0705

LARG

MAGI-1

MRCK

p120ctn

PAK

PDZ-RhoGEF

Por1

POSH

sif

Src

STEF

TNF-α receptor

 Swiss-Prot:

β-catenin

C-cadherin

CD44

GFP

heparin-binding epidermal growth factor

IQGAP1

IQGAP2

MMP-2

PTP-μ

Rac1

RhoA

RhoG

Rhotekin

SHP-1

SHP-2

Tiam1

Vav2

WASP

Glossary

COMPACTION

A process that is unique to mammalian embryonic cleavage, in which the blastomeres move closely together after the third cleavage to form a compact sphere. Tight junctions form between the outer-sphere cells, whereas cells inside form gap junctions, which facilitate the passage of small molecules and ions between the cells.

SYNAPTOGENESIS

The formation of a synaptic contact, a process involving elongation of the nerve process, recognition of guidance molecules by the growth cone and identification of the target.

KERATINOCYTES

Differentiated epithelial cells of the skin.

OPTICAL TWEEZERS

Focused photon fields.

SINGLE-PARTICLE TRACKING

A technique used to study the lateral composition of the plasma membrane of cells, in particular the movement of individual components.

CLASSIC CADHERINS

(For example, E-, N-, P- and R-cadherin.) A subfamily of cadherins that share a common primary structure and bind to catenins through conserved cytoplasmic domains.

FAT-LIKE CADHERINS

(For example, FAT1 and FAT2.) A subfamily of cadherins that contain large tandem arrays (19?34) of extracellular cadherin domains, a globin domain and an EGF domain.

SEVEN-PASS TRANSMEMBRANE CADHERINS

A subfamily of cadherins that show some similarity to the secretin family of G-protein- linked receptors and contain eight to nine extracellular cadherin domains, two globin domains and four EGF domains. Also present is a domain called the Flamingo box, which is located between the last extracellular cadherin domain and the first EGF domain and is highly conserved across species in this subfamily.

CIS DIMER

A dimer on the same membrane.

TRANS DIMER

A dimer on the facing membrane.

EGTA

Ethylenebis (oxyethylene-trinitrilo)tetraacetic acid. A chelating agent with a high affinity for Ca2+ ions.

ARMADILLO REPEAT

A sequence of 42 amino acids repeated in tandem that was first identified in the Drosophila segment polarity gene armadillo.

L FIBROBLAST

A mouse fibroblast line derived from connective tissue that does not express adhesion molecules.

GASTRULATION

A series of morphogenetic movements observed during the early development of most animals that leads to the formation of a multilayered embryo with an outer cell layer (ectoderm), an inner cell layer (endoderm), and an intermediate cell layer (mesoderm).

APICAL PLASMA MEMBRANE

The surface of an epithelial cell that faces the lumen of a cavity or tube.

PDZ DOMAIN

Protein interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (PSD-95, discs-large and ZO-1).

HYPERPLASIA

The increase in the size of a tissue or organ, which results from an increase in the total number of cells present. The part that is affected retains its normal form.

DYSPLASIA

Disordered growth: that is, an abnormally organized cell. The alterations include size, shape (pleomorphism), hypochromatic nuclei, and also architectural orientation of adult cells, which generally represents a premalignant stage.

METALLOPROTEINASE

Proteinase that has a metal ion at its active site.

ADP RIBOSYLATION

The transfer, through an ADP ribosyltransferase, of one or more ADPribosyl groups from NAD+ to a protein.

NEURITE EXTENSION

The process by which a nerve cell can give rise to an axon or a dendrite.

STRESS FIBRE

Axial bundle of F-actin that underlies the cell bodies.

FILOPODIUM

Finger-like exploratory cell extension found in crawling cells and growth cones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukata, M., Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell — cell adhesion. Nat Rev Mol Cell Biol 2, 887–897 (2001). https://doi.org/10.1038/35103068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35103068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing