Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Alzheimer's disease and Aβ toxicity: from top to bottom

Abstract

Evidence implicating the β-amyloid protein (Aβ) in the pathogenesis of Alzheimer's disease has steadily accumulated. However, the mechanism by which Aβ causes dementia is unknown. Here we argue that a more integrated, top–down approach to brain function is needed to assess the role of Aβ in Alzheimer's disease, and that more attention should be paid to the effects of Aβ on synaptic function rather than on cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways in neurons, astrocytes and microglia that are implicated in β-amyloid toxicity.
Figure 2: Effects of β-amyloid on pathways that control synaptic plasticity in dendrites.

Similar content being viewed by others

References

  1. Small, D. H. & McLean, C. A. Alzheimer's disease and the amyloid β protein: what is the role of amyloid? J. Neurochem. 73, 443–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Nunan, J. & Small, D. H. Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett. 483, 6–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Terry, R. D. Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 1118–1119 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. National Institute on Drug Abuse. Computational neuroscience at the NIH. Nature Neurosci. 3, 1161–1164 (2000).

  6. McClelland, J. L. & Goddard, N. H. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6, 654–665 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakurai, Y. Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. J. Neurosci. 14, 2606–2623 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakurai, Y. How do cell assemblies encode information in the brain? Neurosci. Biobehav. Rev. 23, 785–796 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Amit, D. J. & Treves, A. Associative memory neural network with low temporal spiking rates. Proc. Natl Acad. Sci. USA 86, 7871–7875 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davies, C. A., Mann, D. M., Sumpter, P. Q. & Yates, P. O. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci. 78, 151–164 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Esiri, M. M., Pearson, R. C. A., Steele, J. E., Bowen, D. M. & Powell, T. P. A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 53, 161–165 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K. & Powell, T. P. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl Acad. Sci. USA 82, 4531–4534 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horn, D., Levy, N. & Ruppin, E. Neuronal-based synaptic compensation: a computational study in Alzheimer's disease. Neural Comput. 8, 1227–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Ruppin, E. & Reggia, J. A. A neural model of memory impairment in diffuse cerebral atrophy. Br. J. Psychiatry 166, 19–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nature Neurosci. 3, 1178–1183 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Turrigiano, G. G. & Nelson, S. G. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Chechik, G., Meilijson, I. & Ruppin, E. Effective neuronal learning with ineffective Hebbian learning rules. Neural Comput. 13, 817–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Horn, D., Levy, N. & Ruppin, E. Memory maintenance via neuronal regulation. Neural Comput. 10, 1–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Horn, D., Levy, N. & Ruppin, E. Neuronal regulation versus synaptic unlearning in memory maintenance mechanisms. Netw. Comput. Neural Syst. 9, 577–586 (1998).

    Article  CAS  Google Scholar 

  23. Harrison, P. J., Barton, A. J., Najlerahim, A. & Pearson, R. C. A. Distribution of a kainate/AMPA receptor mRNA in normal and Alzheimer brain. Neuroreport 1, 149–152 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Bear, M. F. Mechanism for a sliding synaptic modification threshold. Neuron 15, 1–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Impey, S., Obrietan, K. & Storm, D. R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Van Rossum, M. C. W., Bi, G. Q. & Turrigiano, G. G. Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 275, 209–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kistler, W. M. & Van Hemmen, J. L. Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Comput. 12, 385–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Knowles, R. B. et al. Plaque-induced neurite abnormalities: implication for disruption of neural networks in Alzheimer's disease. Proc. Natl Acad. Sci. USA 96, 5274–5279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purves, D., Voyvodic, J. T., Magrassi, L. & Yawo, H. Nerve terminal remodeling visualized in living mice by repeated examination of the same neuron. Science 238, 1122–1126 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Kapur, A., Yeckel, M. F., Gray, R. & Johnston, D. L-type calcium channels are required for one form of hippocampal mossy fiber LTP. J. Neurophysiol. 79, 2181–2190 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Segal, M. Imaging of calcium variations in living dendritic spines of cultured rat hippocampal neurons. J. Physiol. 486, 283–295 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arendt, T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102, 723–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Phinney, A. L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meberg, P. J., Kossel, A. H., Williams, C. B. & Kater, S. B. Calcium-dependent alterations in dendritic architecture of hippocampal pyramidal neurons. Neuroreport 10, 639–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Mattson, M. P., Tomaselli, K. J. & Rydel, R. E. Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Mattson, M. P. et al. β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weiss, J. H., Pike, C. J. & Cotman, C. W. Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62, 372–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Ueda, K., Shinohara, S., Yagami, T., Asakura, K. & Kawasaki, K. Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J. Neurochem. 68, 265–271 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Sberna, G., Sáez-Valero, J., Beyreuther, K., Masters, C. L. & Small, D. H. The amyloid-β protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J. Neurochem. 69, 1177–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Ferrer, I. et al. Phosphorylated Map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 11, 144–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Dineley, K. T. et al. β-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 21, 4125–4133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, H. Y. et al. β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J. Biol. Chem. 275, 5626–5632 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Q. S., Kawai, H. & Berg, D. K. β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc. Natl Acad. Sci. USA 98, 4734–4739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pettit, D. L., Shao, Z. & Yakel, J. L. β-Amyloid1–42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 21, RC120, 1–5 (2001). | PubMed |

    Article  Google Scholar 

  49. Cheung, N. S., Small, D. H. & Livett, B. G. An amyloid peptide, βA4 25–35, mimics the function of substance P on modulation of nicotine-evoked secretion and desensitization in cultured bovine adrenal chromaffin cells. J. Neurochem. 60, 1163–1166 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Kihara, T. et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a β-amyloid-induced neurotoxicity. J. Biol. Chem. 276, 13541–13546 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Schubert, D. et al. Amyloid peptides are toxic via a common oxidative mechanism. Proc. Natl Acad. Sci. USA 92, 1989–1993 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pike, C. J., Ramezan-Arab, N. & Cotman, C. W. β-Amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants. J. Neurochem. 69, 1601–1611 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Hensley, K. et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl Acad. Sci. USA 91, 3270–3274 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. White, A. R., Bush, A. I., Beyreuther, K., Masters, C. L. & Cappai, R. Exacerbation of copper toxicity in primary neuronal cultures depleted of cellular glutathione. J. Neurochem. 72, 2092–2098 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Kawahara, M. & Kuroda, Y. Molecular mechanism of neurodegeneration induced by Alzheimer's β-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53, 389–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Kawahara, M., Kuroda, Y., Arispe, N. & Rojas, E. Alzheimer's β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275, 14077–14083 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Lorenzo, A. et al. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nature Neurosci. 3, 460–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Hertel, C. et al. Inhibition of the electrostatic interaction between β-amyloid peptide and membranes prevents β-amyloid-induced toxicity. Proc. Natl Acad. Sci. USA 94, 9412–9416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yaar, M. et al. Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest. 100, 2333–2340 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuner, P., Schubenel, R. & Hertel, C. β-Amyloid binds to p75NTR and activates NFκB in human neuroblastoma cells. J. Neurosci. Res. 54, 798–804 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Kane, M. D. et al. Inhibitors of V-type ATPases, bafilomycin A1 and concanamycin A, protect against β-amyloid-mediated effects on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 72, 1939–1947 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Z. et al. Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation. J. Neurochem. 67, 1595–1606 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Ivins, K. J., Ivins, J. K., Sharp, J. P. & Cotman, C. W. Multiple pathways of apoptosis in PC12 cells. CrmA inhibits apoptosis induced by β-amyloid. J. Biol. Chem. 274, 2107–2112 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Ivins, K. J., Thornton, P. L., Rohn, T. T. & Cotman, C. W. Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol. Dis. 6, 440–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. J. Neurosci. 20, 1386–1392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson, A. J., Pike, C. J. & Cotman, C. W. Differential induction of immediate early gene proteins in cultured neurons by β-amyloid (Aβ): association of c-Jun with Aβ-induced apoptosis. J. Neurochem. 65, 1487–1498 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Estus, S. et al. Aggregated amyloid-β protein induces cortical neuronal apoptosis and concomitant 'apoptotic' pattern of gene induction. J. Neurosci. 17, 7736–7745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kihiko, M. E., Tucker, H. M., Rydel, R. E. & Estus, S. c-Jun contributes to amyloid β-induced neuronal apoptosis but is not necessary for amyloid β-induced c-jun induction. J. Neurochem. 73, 2609–2612 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Troy, C. M. et al. β-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J. Neurochem. 77, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R. & Park, D. S. Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F·DP, in β-amyloid-induced neuronal death. J. Biol. Chem. 274, 19011–19016 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Giovanni, A. et al. E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J. Biol. Chem. 275, 11553–11560 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA 90, 7951–7955 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Yan, S. D. et al. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 5296–5301 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McDonald, D. R., Bamberger, M. E., Combs, C. K. & Landreth, G. E. β-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci. 18, 4451–4460 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Combs, C. K., Johnson, D. E., Cannady, S. B., Lehman, T. M. & Landreth, G. E. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β -amyloid and prion proteins. J. Neurosci. 19, 928–939 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382, 716–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron 17, 553–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Akama, K. T., Albanese, C., Pestell, R. G. & Van Eldik, L. J. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc. Natl Acad. Sci. USA 95, 5795–5800 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Akama, K. T. & Van Eldik, L. J. β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκB-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275, 7918–7924 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Yan, S. D. et al. An intracellular protein that binds amyloid–β peptide and mediates neurotoxicity in Alzheimer's disease. Nature 389, 689–695 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Alzheimer's disease

APP

α7 nAChR

ERK/MAP kinase

tau

Bax

cdk

E2F1

ERAB

FADD

FAS/TNFR

IL1β

iNOS

JNK

L-VGCC

m-CSF

NFκB

p35

p75NTR

RAGE

Rb

TNFα

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCES

Computational neuroscience

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, D., Mok, S. & Bornstein, J. Alzheimer's disease and Aβ toxicity: from top to bottom. Nat Rev Neurosci 2, 595–598 (2001). https://doi.org/10.1038/35086072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing