Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia

Abstract

The vertical migration of zooplankton into lower and darker water strata by day is generally explained by the avoidance of visually orienting predators, mainly fish1,2,3,4; however, it is unclear why daily zooplankton migration has been maintained in fishless areas5. In addition to predation, ultraviolet radiation—a hazardous factor for zooplankton in the surface layers of marine and freshwater environments6,7,8—has been suspected as a possible cause of daytime downward migration9. Here we test this hypothesis by studying several Daphnia species, both in a controlled laboratory system and under natural sunlight in an outdoor system. We selected Daphnia species that differed in their pigmentation as both melanin and carotenoids have been shown to protect Daphnia from ultraviolet light10,11. All Daphnia species escaped into significantly deeper water layers under ultraviolet radiation. The extent to which the daphnids responded to this radiation was inversely linked to their pigmentation, which reduced ultraviolet transmission. These results suggest that ultraviolet avoidance is an additional factor in explaining daytime downward migration. Synergistic benefits might have shaped the evolution of this complex behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral irradiation in mesocosms with (test) and without (control) ultraviolet radiation.
Figure 2: Results from laboratory experiments.
Figure 3: Spectral transmission of exuviae from transparent and melanized D. pulex measured in 1-nm intervals from 280 to 780 nm.

Similar content being viewed by others

References

  1. Zaret, T. M. & Suffern, J. S. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21, 804–813 (1976).

    Article  ADS  Google Scholar 

  2. Stich, H. B. & Lampert, W. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293, 396–398 (1981).

    Article  ADS  Google Scholar 

  3. Neill, W. E. Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345, 524–526 (1990).

    Article  ADS  Google Scholar 

  4. De Meester, L., Weider, L. J. & Tollrian, R. Alternative antipredator defences and genetic polymorphism in a pelagic predator–prey system. Nature 378, 483–485 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Williamson, C. E. et al. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology (in the press).

  6. Calkins, J. & Thordadottir, T. The ecological significance of solar UV radiation on aquatic organisms. Nature 283, 563–566 (1980).

    Article  ADS  Google Scholar 

  7. Williamson, C. E., Zagarese, H. E., Schulze, P. C., Hargreaves, B. R. & Seva, J. The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes. J. Plankton Res. 16, 205–218 (1994).

    Article  Google Scholar 

  8. Siebeck, O. & Böhm, U. Challenges for an appraisal of UV-B effects upon planktonic crustaceans under natural radiation conditions with a non-migrating (Daphnia pulex obtusa) and a migrating cladoceran (Daphnia galeata). Arch. Hydrobiol. Beih. Ergebn. Limnol. 43, 197–206 (1994).

    Google Scholar 

  9. Kerfoot, W. C. Adaptive value of vertical migration: comments on the predator hypothesis and some alternatives. Contr. Mar. Sci. Suppl. 27, 91–113 (1985).

    Google Scholar 

  10. Hairston, N. G. Jr Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proc. Natl Acad. Sci. USA 73, 971–974 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Hebert, P. D. N. & Emery, C. J. The adaptive significance of cuticular pigmentation in Daphnia. Funct. Ecol. 4, 703–710 (1990).

    Article  Google Scholar 

  12. Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).

    Article  Google Scholar 

  13. De Meester, L., Dawidowicz, P., van Gool, E. & Loose, C. J. in The Ecology and Evolution of Inducible Defenses (eds. Tollrian, R. & Harvell, C. D.) 160–176 (Princeton Univ. Press, Princeton, New Jersey, 1999).

    Google Scholar 

  14. Ringelberg, J. The positively phototactic reaction of Daphnia magna Strauss: a contribution to the understanding of diurnal vertical migration. Neth. J. Sea Res. 2, 319–406 (1964).

    Article  Google Scholar 

  15. Bollens, S. M., Frost, B. W. & Cordell, J. R. Chemical, mechanical and visual cues in the vertical migration behavior of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16, 555–564 (1994).

    Article  Google Scholar 

  16. Loose, C. J. & Dawidowicz, P. Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance. Ecology 75, 2255–2263 (1994).

    Article  Google Scholar 

  17. Fleischmann, E. M. The measurement and penetration of ultraviolet radiation into tropical marine water. Limnol. Oceanogr. 34, 1623–1629 (1989).

    Article  ADS  Google Scholar 

  18. Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Smith, K. C. & Macagno, E. R. UV photoreception in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. J. Comp. Physiol. A 166, 597–606 (1990).

    Article  CAS  Google Scholar 

  20. Merker, E. Sehen die Daphnien ultraviolettes Licht? Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere. 48, 277–348 (1930).

    Google Scholar 

  21. Hessen, D. O. Daphnia responses to UV-light. Arch. Hydrobiol. Beih. 43, 85–195 (1994).

    Google Scholar 

  22. Storz, U. C. & Paul, R. J. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. Comp. Physiol. A 183, 709–717 (1998).

    Article  Google Scholar 

  23. Leech, D. M. & Williamson, C. E. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol. Oceanogr. 46, 416–420 (2001).

    Article  ADS  Google Scholar 

  24. Damkaer, D. M. in The Role of Solar Ultraviolet Radiation in Marine Ecosystems (ed. Calkins, J.) 701–706 (Plenum, New York, 1982).

    Book  Google Scholar 

  25. Dodson, S. I. Predicting diel vertical migration of zooplankton. Limnol. Oceanogr. 35, 1195–1200 (1990).

    Article  ADS  Google Scholar 

  26. Smith, R. C. & Baker, K. S. Optical properties of the clearest natural waters (200–800 nm). Appl. Optics 20, 177–184 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Vinyard, G. L. & O'Brien, W. J. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Bd. Can. 33, 2845–2849 (1976).

    Article  Google Scholar 

  28. Confer, J. L. et al. Visual predation by planktivores. Oikos 31, 27–37 (1978).

    Article  Google Scholar 

  29. Madronich, S., McKenzie, R. L., Caldwell, M. M. & Bjorn, L. Changes in ultraviolet radiation reaching the earth's surface. Ambio 24, 143–152 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank L. J. Weider for providing arctic D. pulex. We also thank A. Agrawal, W. Gabriel, S. Gießler, A. F. Sell, B. Schierwater, T. Vines, C. E. Williamson, W. C. Kerfoot and L. J. Weider for comments and advice on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Tollrian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhode, S., Pawlowski, M. & Tollrian, R. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412, 69–72 (2001). https://doi.org/10.1038/35083567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083567

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing