Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation

Abstract

According to Milankovitch theory, the lower summer insolation at high latitudes about 115,000 years ago allowed winter snow to persist throughout summer, leading to ice-sheet build-up and glaciation1. But attempts to simulate the last glaciation using global atmospheric models have failed to produce this outcome when forced by insolation changes only2,3,4,5. These results point towards the importance of feedback effects—for example, through changes in vegetation or the ocean circulation—for the amplification of solar forcing6,7,8,9. Here we present a fully coupled ocean–atmosphere model of the last glaciation that produces a build-up of perennial snow cover at known locations of ice sheets during this period. We show that ocean feedbacks lead to a cooling of the high northern latitudes, along with an increase in atmospheric moisture transport from the Equator to the poles. These changes agree with available geological data10,11,12,13,14,15 and, together, they lead to an increased delivery of snow to high northern latitudes. The mechanism we present explains the onset of glaciation—which would be amplified by changes in vegetation—in response to weak orbital forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seasonal variations of the response of surface temperature and the hydrological cycle to changing insolation forcing at the top of the atmosphere.
Figure 2: Changes in sea surface temperature and heat transport in response to seasonal perturbation in solar forcing.
Figure 3: Response of thermohaline circulation and deep convection to changing insolation forcing.
Figure 4: Monthly time series of snow depth in centimetres.

Similar content being viewed by others

References

  1. Milankovitch, M. K. Kanon der erdbestrahlung und seine anwendung anf daseiszeitenproblem. Serb. Acad. Beorg. Spec. Publ. 132, (1941) (in Yugoslavian); Canon of Insolation and the Ice Age Problem (Israel Program for Scientific Translation, Jerusalem, 1969) (English transl.).

  2. Royer, J. F., Deque, M. & Pestiaux, P. Orbital forcing of the inception of the Laurentide ice sheet? Nature 304, 43–46 (1983).

    Article  ADS  Google Scholar 

  3. Rind, D., Peteet, D. & Kukla, G. Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? J. Geophys. Res. 94, 12851–12871 (1989).

    Article  ADS  Google Scholar 

  4. Oglesby, R. J. Sensitivity of glaciation to initial snow cover, CO2, snow albedo, and oceanic roughness in the NCAR GCM. Clim. Dyn. 4, 219–235 (1990).

    Article  Google Scholar 

  5. Mitchell, J. F. B. Modelling of paleoclimates: examples from the recent past. Phil. Trans. R. Soc. Lond. B 341, 267–275 (1993).

    Article  ADS  Google Scholar 

  6. Dong, B. & Valdes, P. J. Sensitivity studies of northern hemisphere glaciation using an atmospheric general circulation model. J. Clim. 8, 2471–2495 (1995).

    Article  ADS  Google Scholar 

  7. Phillipps, P. J. & Held, M. The response to orbital perturbations in a atmospheric model coupled to a slab ocean. J. Clim. 7, 767–782 (1994).

    Article  ADS  Google Scholar 

  8. Gallimore, R. G. & Kutzbach, J. E. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381, 503–505 (1996).

    Article  CAS  ADS  Google Scholar 

  9. DeNoblet, N. et al. Possible role of atmosphere-biosphere interactions in triggering the last glaciation. Geophys. Res. Lett. 23, 3191–3194 (1996).

    Article  ADS  Google Scholar 

  10. Cortijo, E. et al. Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°-72°N) during the last interglacial period. Paleoceanography 14, 23–33 (1999).

    Article  ADS  Google Scholar 

  11. Duplessy, J. C. & Shackleton, N. J. Response of global deep-water circulation to Earth's climatic change 135,000-107,000 years ago. Nature 316, 500–507 (1985).

    Article  CAS  ADS  Google Scholar 

  12. Ruddiman, W. F. & McIntyre, A. Warmth of the subpolar North Atlantic ocean during Northern Hemisphere ice-sheet growth. Science 204, 173–175 (1979).

    Article  CAS  ADS  Google Scholar 

  13. Adkins, J. F., Boyle, E. A., Keigwin, L. & Cortijo, E. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature 390, 154–156 (1997).

    Article  CAS  ADS  Google Scholar 

  14. Cortijo, E. et al. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446–449 (1994).

    Article  CAS  ADS  Google Scholar 

  15. Duplessy, J. C. & Shackleton, N. J. Deepwater source variations during the last climatic cycle and their impact on deep water circulation. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  16. Marshall, S. J. & Clarke, G. K. C. Ice sheet inception: Subgrid hypsometric parameterization of mass balance in an ice sheet model. Clim. Dyn. 15, 533–550 (1999).

    Article  Google Scholar 

  17. Imbrie, J. et al. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    Article  ADS  Google Scholar 

  18. Imbrie, J. et al. On the structure and origin of major glaciation cycles, 2. The 100,000-year cycle. Paleoceanography 8, 669–735 (1993).

    Article  ADS  Google Scholar 

  19. Balbon, E. Variabilité Climatique et Circulation Thermohaline dans l’océan Atlantique Nord et en Mer de Norvège au Cours du Dernier Quaternaire Supérieur. Thesis, Orsay Univ. (2000).

    Google Scholar 

  20. Braconnot, P., Marti, O., Joussaume, S. & Leclainche, Y. Ocean feedback in response to 6kyr BP insolation. J. Clim. 13, 1537–1553 (2000).

    Article  ADS  Google Scholar 

  21. Berger, A. Long term variation of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  22. Raynaud, D. et al. The ice record of greenhouse gases. Science 259, 926–934 (1993).

    Article  CAS  ADS  Google Scholar 

  23. LIGA members. The last interglacial in high latitudes of the northern hemisphere: Terrestrial and marine evidence. Quat. Int. 10–12, 9–28 (1991).

    Article  Google Scholar 

  24. Sànchez Goñi, M. F., Eynaud, F., Turon, J. L. & Shackleton, N. J. High resolution palynological record off the Iberian margin: direct land-sea correlation for the last interglacial complex. Earth Planet. Sci. Lett. 171, 123–137 (1999).

    Article  ADS  Google Scholar 

  25. Leclainche, Y. et al. Diagnostic versus thermodynamic sea ice models in global coupled ocean-atmosphere simulations. Clim. Dyn. (submitted).

  26. Rahmstorf, S. Bifurcation of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).

    Article  CAS  ADS  Google Scholar 

  27. Ives, J. D., Andrews, J. T. & Barry, R. G. Growth and decay of the Laurentide ice sheet and comparison with Fenno-Scandinavia. Naturwissenschaften 2, 118–125 (1975).

    Article  ADS  Google Scholar 

  28. Andrews, J. T. & Mahafy, M. A. W. Growth rates of the Laurentide ice sheet and sea level lowering (with emphasis on the 115,000 B.P. sea level low). Quat. Res. 6, 167–183 (1976).

    Article  Google Scholar 

  29. Mangerud, J. in Klimageschichtliche Probleme der letzten 130,000 Jahre (ed. Frenzel, B.) 307–330 (Fisher, Stuttgart, 1991).

    Google Scholar 

  30. Schmitz, W. J. & McCartney, M. S. On the North Atlantic circulation. Rev. Geophys. 31, 29–49 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the LODYC for providing the ocean model and the sea-ice model, the LMD for the atmosphere model, and the CERFACS for the coupler, OASIS. Computer time was provided by the Commissariat à l’Energie Atomique. We thank S. Harrison, J. C. Duplessy and D. Paillard for their comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khodri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodri, M., Leclainche, Y., Ramstein, G. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–574 (2001). https://doi.org/10.1038/35069044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35069044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing