Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spindle cycle in budding yeast

Abstract

The mitotic spindle of the budding yeast Saccharomyces cerevisiae will probably be the first such organelle to be understood in molecular detail. Here we describe the mitotic spindle cycle of budding yeast using electron-microscope-derived structures and dynamic live-cell imaging. Recent work has revealed that many general aspects of mitosis are conserved, making budding yeast an excellent model for the study of mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the yeast cell cycle.
Figure 2: Two views of the duplication plaque.
Figure 3: Transient separation of sister chromatids.

Similar content being viewed by others

References

  1. Robinow, C. F. & Marak, J. A fiber appartus in the nucleus of the yeast cell. J. Cell Biol. 29, 129–150 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Byers, B. & Goetsch, L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb. Symp. Quant. Biol. 38, 123–131 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Byers, B. & Goetsch, L. Behavior of spindles and spindles plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol. 124, 511– 523 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peterson, J. & Ris, H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae . J. Cell Sci. 22, 219– 242 (1976).

    CAS  PubMed  Google Scholar 

  5. Kilmartin, J. & Adams, E. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell. Biol. 98, 922–933 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100 , 619–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  8. Straight, A., Marshall, W., Sedat, J. & Murray, A. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  10. Guacci, V., Hogan, E. & Koshland, D. Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell 8, 957– 972 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. West, R. R., Vaisberg, E. V., Ding, R., Nurse, P. & McIntosh, J. R. cut11(+): a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 2839–2855 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chial, H. J., Rout, M. P., Giddings, T. H. & Winey, M. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J. Cell Biol. 143, 1789–1800 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding, R., McDonald, K. & McIntosh, R. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120, 141–151 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  15. Winey, M. et al. Three dimensional untrastructural analysis of the Saccharomyces cereviside mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Bullitt, E., Rout, M., Kilmartin, J. & Akey, C. The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89, 1077–1086 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  17. O'Toole, E., Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae . Mol. Biol. Cell 10, 2017– 2031 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McIntosh, J. R. & Hering, G. E. Spindle fiber action and chromosome movement. Annu. Rev. Cell Biol. 7, 403–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329–335 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  21. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Byers, B., Shriver, K. & Goetsch, L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae . J. Cell Sci. 30, 331– 352 (1978).

    CAS  PubMed  Google Scholar 

  23. Hyams, J. & Borisy, G. Nucleation of microtubules in vitro by isolated spindle pole bodies of the yeast Saccharomyces cerevisiae. J. Cell Biol. 78, 401– 414 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Adams, I. R. & Kilmartin, J. V. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145, 809– 823 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luca, F. C. & Winey, M. MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol. Biol. Cell 9, 29–46 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haase, S. B., Winey, M. & Reed, S. I. Multi-step control of spindle pole body duplication by cyclin-dependent-kinase. Nature Cell Biol. 3, 38–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spinde pole body via their interaction with Spc110p. EMBO J. 18, 6985–6995 (1997).

    Article  Google Scholar 

  28. Sundberg, H. & Davis, T. A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 2575–2590 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fitch, I. et al. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3, 805–818 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roof, D. M., Meluh, P. B. & Rose, M. D. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 118, 95–108 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123, 849–858 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135– 150 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heath, I. B. & Rethoret, K. Nuclear cycle of Saprolegnia ferax. J. Cell Sci. 49, 353–367 (1981).

    CAS  PubMed  Google Scholar 

  34. Heath, I. B. Behavior of kinetochores during mitosis in the fungus Saprolegnia ferax . J. Cell Biol. 84, 531– 546 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. McCarroll, R. M. & Fangman, W. L. Time of replication of yeast centromeres and telomeres. Cell 54, 505–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Neff, M. & Burke, D. Random segreation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics 127, 463–473 ( 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicklas, R. B. How cells get the right chromosomes. Science 227, 632–637 (1997).

    Article  Google Scholar 

  38. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379– 1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. O'Toole, E. T. et al. Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol. Biol. Cell 8, 1–11 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dej, K. J. & Orr-Weaver, T. L. Separation anxiety at the centromere. Trends Cell Biol. 10, 392–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sumner, A. T. The structure of the centromeric region of CHO chromosomes. Cell Biol. Int. 22, 127–130 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  42. Waters, J. C., Skibbens, R. V. & Salmon, E. D. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J. Cell Sci. 109, 2823–2831 (1996).

    CAS  PubMed  Google Scholar 

  43. Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181– 1191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeh, E., Skibbens, R., Cheng, J., Salmon, E. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Kahana, J. A., Schnapp, B. J. & Silver, P. A. Kinetics of spindle pole body separation in budding yeast. Proc. Natl Acad. Sci. USA 92, 9707–9711 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pellman, D., Bagget, M., Tu, H. & Fink, G. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae . J. Cell Biol. 130, 1373– 1385 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Juang, Y-L. et al. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science 275, 1311– 1314 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L. & Morgan, D. O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoyt, M. A. Exit from mitosis: spindle pole power. Cell 102, 267–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Rose, M. D. Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell. Dev. Biol. 12, 663–695 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to C. Pearson and K. Bloom for Fig. 3 and for sharing unpublished data. We thank S. Jones for critical reading of the manuscript, and members of our laboratories for support for our structural analysis. Our structural work is supported by the National Institutes of Health (grant nos GM51312 & GM59992) and the March of Dimes Birth Defects Foundation (FY00-55). The Boulder Laboratory for 3D Fine Structure is a National Research Resource Center (RR00592) under the direction of J. R. McIntosh.

Author information

Authors and Affiliations

Authors

Supplementary information

Movie 1a

Duplicating spindle pole body. Serial 2.3-nm tomographic slices of a duplicating SPB in a 300-nm section, as shown in Fig. 2b, animated to allow the viewer to see the series of images through the structure. (MOV 3807 kb)

Movie 1b

Duplicating spindle pole body. The same series of images with model points added. Nuclear (dark blue) and cytoplasmic (light blue) microtubules are indicated, as are the two layers of the duplication plaque (red) and the central plaque of the existing SPB (yellow). These model points are used to generate a three-dimensional model as shown in Fig 1b. (MOV 5241 kb)

Movie 2

Time-lapse movie of transient kinetochore splitting. Images were obtained at 1-s intervals of cell similar to that in Fig. 3 with LacI repressor-GFP bound to a Lac-operator cluster 1 kb from the centromere on chromosome XI; the positions of the SPBs are marked by Spc72-GFP. Selected in-focus frames were used to compose the movie, which includes elapsed time. (MOV 7891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winey, M., O'Toole, E. The spindle cycle in budding yeast. Nat Cell Biol 3, E23–E27 (2001). https://doi.org/10.1038/35050663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing