Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation

Abstract

Growth and development are dependent on the faithful duplication of cells. Duplication requires accurate genome replication, the repair of any DNA damage, and the precise segregation of chromosomes at mitosis; molecular checkpoints ensure the proper progression and fidelity of each stage. Loss of any of these highly conserved functions may result in genetic instability and proneness to cancer. Here we show that highly significant increases in chromosome missegregation occur in cell lines lacking the RAD51-like genes XRCC2 and XRCC3. This increased missegregation is associated with fragmentation of the centrosome, a component of the mitotic spindle, and not with loss of the spindle checkpoint. Our results show that unresolved DNA damage triggers this instability, and that XRCC2 and XRCC3 are potential tumour-suppressor genes in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Karyotypic analysis of metaphase and interphase cells in irs1 (XRCC2-deficient) and irs1SF (XRCC3-deficient) lines.
Figure 2: Cell-cycle progression of irs1 (XRCC2-deficient) and V79 (parental line) cells in the presence of nocodazole.
Figure 3: Centrosome abnormalities and multipolar spindles in irs1 (XRCC2-deficient) and irs1SF (XRCC3-deficient) cells.

Similar content being viewed by others

References

  1. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  2. Duesberg, P., Rausch, C., Rasnick, D. & Hehlmann, R. Proc. Natl Acad. Sci. USA 95, 13692–13697 (1998).

    Article  CAS  Google Scholar 

  3. Baumann, P. & West, S. C. Trends Biochem. Sci. 23, 247–251 (1998).

    Article  CAS  Google Scholar 

  4. Thacker, J. Trends Genet. 15, 166–168 (1999).

    Article  CAS  Google Scholar 

  5. Johnson, R. D., Liu, N. & Jasin, M. Nature 401, 397–399 (1999).

    CAS  PubMed  Google Scholar 

  6. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. Genes Dev. 13, 2633–2638 (1999).

    Article  CAS  Google Scholar 

  7. Tambini, C. E. et al. Genomics 41, 84–92 (1997).

    Article  CAS  Google Scholar 

  8. Liu, N. et al. Mol. Cell 1, 783–793 (1998).

    Article  CAS  Google Scholar 

  9. Cartwright, R., Tambini, C. E., Simpson, P. J. & Thacker, J. Nucleic Acids Res. 26, 3084–3089 (1998).

    Article  CAS  Google Scholar 

  10. Fatyol, K., Cserpan, I., Praznovszky, T., Kereso, J. & Hadlaczky, G. Nucleic Acids Res. 22, 3728–3736 (1994).

    Article  CAS  Google Scholar 

  11. Faravelli, M. et al. Cytogenet. Cell Genet. 83, 281–286 (1998).

    Article  CAS  Google Scholar 

  12. Thacker, J. Biochimie 81, 77–85 (1999).

    Article  CAS  Google Scholar 

  13. Jeggo, P. A. Adv. Genet. 38, 185–218 (1998).

    Article  CAS  Google Scholar 

  14. Amon, A. Curr. Opin. Genet. Dev. 9, 69–75 (1999).

    Article  CAS  Google Scholar 

  15. Taylor, S. S. & McKeon, F. Cell 89, 727–735 (1997).

    Article  CAS  Google Scholar 

  16. Stearns, T., Evans, L. & Kirschner, M. Cell 65, 825–836 (1991).

    Article  CAS  Google Scholar 

  17. Campbell, M. J. & Davis, R. W. J. Mol. Biol. 286, 417–435 (1999).

    Article  CAS  Google Scholar 

  18. Bishop, D. K. et al. J. Biol. Chem. 273, 21482–21488 (1998).

    Article  CAS  Google Scholar 

  19. Xu, X. et al. Mol. Cell. 3, 389–395 (1999).

    Article  CAS  Google Scholar 

  20. Tutt, A. et al. Curr. Biol. 9, 1107–1110 (1999).

    Article  CAS  Google Scholar 

  21. Venkitaraman, A. R. Science 286, 1100–1102 (1999).

    Article  CAS  Google Scholar 

  22. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Mol. Cell 4, 511–518 (1999).

    Article  CAS  Google Scholar 

  23. Hsu, L. C. & White, R. L. Proc. Natl Acad. Sci. USA 95, 12983–12988 (1998).

    Article  CAS  Google Scholar 

  24. Sibon, O. C., Kelkar, A., Lemstra, W. & Theurkauf, W. E. Nature Cell Biol. 2, 90–95 (2000).

    Article  CAS  Google Scholar 

  25. Cox, M. M. et al. Nature 404, 37–41 (2000).

    Article  CAS  Google Scholar 

  26. Zimmerman, W., Sparks, C. A. & Doxsey, S. J. Curr. Opin. Cell Biol. 11, 122–128 (1999).

    Article  CAS  Google Scholar 

  27. Fry, A. M., Meraldi, P. & Nigg, E. A. EMBO J. 17, 470–481 (1998).

    Article  CAS  Google Scholar 

  28. Pihan, G. A. et al. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  29. Lingle, W. L. & Salisbury, J. L. Am. J. Pathol. 155, 1941–1951 (1999).

    Article  CAS  Google Scholar 

  30. Savage, J. R. J. Med. Genet. 13, 103–122 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. George, C. Tambini and S. Townsend for technical support, D. Papworth for statistical analysis, J. Savage for discussion, and T. Humphrey for comments on the manuscript. This work was supported by the European Commission (contract F14P-CT950010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Thacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, C., Simpson, P., Wilson, C. et al. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2, 757–761 (2000). https://doi.org/10.1038/35036399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing