Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular-scale interface engineering for polymer light-emitting diodes

Abstract

Achieving balanced electron–hole injection and perfect recombination of the charge carriers is central to the design of efficient polymer light-emitting diodes1,2 (LEDs). A number of approaches have focused on modification of the injection contacts, for example by incorporating an additional conducting-polymer layer at the indium-tin oxide (ITO) anode3,4. Recently, the layer-by-layer polyelectrolyte deposition route has been developed for the fabrication of ultrathin polymer layers5,6. Using this route, we previously incorporated ultrathin (<100 Å) charge-injection interfacial layers in polymer LEDs7. Here we show how molecular-scale engineering of these interlayers to form stepped and graded electronic profiles can lead to remarkably efficient single-layer polymer LEDs. These devices exhibit nearly balanced injection, near-perfect recombination, and greatly reduced pre-turn-on leakage currents. A green-emitting LED comprising a poly(p-phenylene vinylene) derivative sandwiched between a calcium cathode and the modified ITO anode yields an external forward efficiency of 6.0 per cent (estimated internal efficiency, 15–20 per cent) at a luminance of 1,600 candelas per m2 at 5 V.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the hole-injection interlayer between ITO and the LEP, and chemical structure of some of the polymers.
Figure 2: Schematic electronic profile of the graded interlayer and some experimental confirmation.
Figure 3: Performance of LEDs with an 860-Å F8–F8BT film, Ca cathode and various ITO anodes.
Figure 4: Performance of LEDs with a 720-Å layer of green-emitting PPV (chemical structure in Fig. 1).

Similar content being viewed by others

References

  1. Cao, Y., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. Improved quantum efficiency for electoluminescence in semiconducting polymers. Nature 397, 414 –417 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 ( 1999).

    Article  ADS  CAS  Google Scholar 

  3. Karg, S., Scott, J. C., Salem, J. R. & Angelopoulos, M. Increased brightness and lifetime of polymer light-emitting diodes with polyaniline anodes. Synth. Met. 80, 111– 117 (1996).

    Article  CAS  Google Scholar 

  4. Carter, J. C. et al. Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene). Appl. Phys. Lett. 71 , 34–36 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 ( 1997).

    Article  CAS  Google Scholar 

  6. Onitsuka, O., Fou, A. C., Ferreira, M., Hsieh, B. R. & Rubner, M. F. Enhancement of light emitting diodes based on self-assembled heterostructures of poly(p-phenylene vinylene). J. Appl. Phys. 80, 4067–4071 ( 1996).

    Article  ADS  CAS  Google Scholar 

  7. Ho, P. K. H., Granström, M., Friend, R. H. & Greenham, N. C. Ultrathin self-assembled layers at the ITO interface to control charge injection and electroluminescence efficiency in polymer light-emitting diodes. Adv. Mater. 10, 769–774 (1998).

    Article  CAS  Google Scholar 

  8. Tai, K., Yang, L., Wang, Y. H., Wynn, J. D. & Cho, A. Y. Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers. Appl. Phys. Lett. 56, 2496–2498 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Arkhipov, V. I., Emelianova, E. V., Tak, Y. H. & Bässler, H. Charge injection into light-emitting diodes: theory and experiment. J. Appl. Phys. 84, 848–856 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Yoo, D., Shiratori, S. S. & Rubner, M. F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31, 4309–4318 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Lösche, M., Schmitt, J., Decher, G., Bouwman, W. G. & Kjaer, K. Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31, 8893– 8906 (1998).

    Article  ADS  Google Scholar 

  12. Dietrich, M., Heinze, J., Heywang, G. & Jonas, F. Electrochemical and spectroscopic characterisation of polyalkylenedioxythiophenes. J. Electroanal. Chem. 369, 87–92 (1994).

    Article  CAS  Google Scholar 

  13. Lögdlund, M., Lazzaroni, R., Stafström, S., Salaneck, W. R. & Brédas, J.-L. Direct observation of charge-induced pi-electronic structural changes in a conjugated polymer. Phys. Rev. Lett. 63, 1841–1844 (1989).

    Article  ADS  Google Scholar 

  14. Xing, K. Z., Fahlman, M., Chen, X. W., Inganäs, O. & Salaneck, W. R. The electronic structure of poly(3,4-ethylenedioxythiophene) studied by xps and ups. Synth. Met. 89, 161–165 (1997).

    Article  CAS  Google Scholar 

  15. van Slyke, S. A., Chen, C. H. & Tang, C. W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69, 2160– 2162 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Kim, J. S., Friend, R. H. & Cacialli, F. Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J. Appl. Phys. 86, 2774– 2778 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Campbell, I. H., Hagler, T. W. & Smith, D. L. Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Phys. Rev. Lett. 76, 1900–1903 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Brown, T. M. et al. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylenedioxythiophene) hole injection layer. Appl. Phys. Lett. 75, 1679– 1681 (1999).

    Article  ADS  CAS  Google Scholar 

  19. He, Y., Gong, S., Hattori, R. & Kanicki, J. High performance organic polymer light-emitting heterostructure devices. Appl. Phys. Lett. 74, 2265–2267 ( 1999).

    Article  ADS  CAS  Google Scholar 

  20. Spreitzer, H. et al. Soluble phenyl-substituted PPVs - new materials for highly efficient polymer LEDs. Adv. Mater. 10, 1340–1343 (1998).

    Article  CAS  Google Scholar 

  21. Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Kim, J. S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J. Appl. Phys. (in the press).

  23. Harrison, N. T., Hayes, G. R., Phillips, R. T., & Friend, R. H. Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys. Rev. Lett. 77, 1881– 1884 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Baldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Colthup, N. B., Daly, L. H. & Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy (Academic, New York, 1964).

    Google Scholar 

Download references

Acknowledgements

We thank I. Grizzi, D. J. Lacey and E. P. Woo for support; J.-W. Cai for X-ray photoelectron spectroscopy; and A. Gerhard for electroabsorption measurements. P.K.H.H. is on leave from the National University of Singapore and thanks St John's College and IMRE for funding. This work was supported in part by the Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, P., Kim, JS., Burroughes, J. et al. Molecular-scale interface engineering for polymer light-emitting diodes . Nature 404, 481–484 (2000). https://doi.org/10.1038/35006610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing