Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscopic channel lattices with controlled anisotropic wetting

Abstract

Engineered microscopic surface structures allow local control of physical surface properties such as adhesion, friction and wettability. These properties are related both to molecular interactions and the surface topology1,2—for example, selective adsorption and molecular recognition capabilities3 require controlled anisotropy in the surface properties. Chemistry with extremely small amounts of material has become possible using liquid-guiding channels of sub-micrometre dimensions4,5,6. Laterally structured surfaces with differing wettabilities may be produced using various techniques, such as microcontact printing7,8,9, micromachining10, photolithography11,12 and vapour deposition13. Another strategy14 for introducing anisotropic texture is based on the use of the intrinsic material properties of stretched ultrathin polymer coatings. Here we present a fast and simple method to generate extended patterned surfaces with controlled wetting properties on the nanometre scale, without any lithographic processes. The technique utilizes wetting instabilities that occur when monomolecular layers are transferred onto a solid substrate. The modified surfaces can be used as templates for patterning a wide variety of molecules and nanoclusters into approximately parallel channels, with a spatial density of up to 20,000 cm-1.We demonstrate the transport properties of these channels for attolitre quantities of liquid.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic scanning force microscope (SFM) image of the structured surface.
Figure 2: SFM image of liquid-deposited metal cluster.
Figure 3: SFM image (phase) of liquid-guiding channels.
Figure 4: SFM image of gas-deposited FeCl3 molecules.

Similar content being viewed by others

References

  1. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contaminations in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  2. Wagner, T., Neinhuis, C. & Barthlott, W. Wettability and contaminability of insect wings as a function of their surface sculpture. Acta Zool. 77, 213–225 (1996).

    Article  Google Scholar 

  3. Böltau, M., Walheim, S., Mlynek, J., Krausch, G. & Steiner, U. Surface-induced structure formation of polymer blends on patterned surfaces. Nature 391, 877–879 (1998).

    Article  ADS  Google Scholar 

  4. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Nature 283, 57–60 (1999).

    CAS  Google Scholar 

  5. Delamarche, E., Bernard, A., Schmid, H., Michel, B. & Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781 (1997).

    Article  CAS  Google Scholar 

  6. Harrison, D. J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Kumar, A., Biebuyk, H. A. & Whitesides, G. M. Patterning self-assembled monolayers: applications in materials science. Langmuir 10, 1498–1511 (1994).

    Article  CAS  Google Scholar 

  8. Xia, Y. & Whitesides, G. M. Extending microcontact printing as a microlithographic technique. Langmuir 13, 2059–2067 (1997).

    Article  CAS  Google Scholar 

  9. Evans, S. D., Flynn, T. M. & Ulman, A. Self-assembled multilayer formation on predefined templates. Langmuir 11, 3811–3814 (1995).

    Article  CAS  Google Scholar 

  10. Abott, N. L., Folkers, J. P., Whitesides, G. M. Manipulation of the wettability of surfaces on the 0.1–1-micrometer scale through micromachining and molecular self-assembly. Science 257, 1380–1382 (1992).

    Article  ADS  Google Scholar 

  11. Wang, R. et al. Light induced amphiphilic surfaces. Nature 388, 431–432 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Calvert, J. M. Lithographic patterning of self-assembled films. J. Vac. Sci. Technol. B 11(6), 2155–2163 (1993).

    Article  Google Scholar 

  13. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Wittmann, J. C. & Smith, P. Highly oriented thin films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352, 414–417 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Kuhn, H., Möbius, D. & Bücher, H. in Physical Methods of Chemistry, Vol. 1 (3b) (eds Weisenberger, A. & Rossiter, B.) 577–702 (Wiley, New York, 1972).

    Google Scholar 

  16. Petrov, J. G., Kuhn, H. & Möbius, D. Three-phase contact line motion in the deposition of spread monolayers. J. Colloid Interface Sci. 37, 66–75 (1980).

    Article  ADS  Google Scholar 

  17. Riegler, H. & Spratte, K. Structural changes in lipid monolayers during the Langmuir-Blodgett transfer due to substrate / monolayer interactions. Thin Solid Films 210/211, 9–12 (1992).

    Article  Google Scholar 

  18. Neumann, A. W. Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application. Adv. Colloid Interface Sci. 59, 105–191 (1972).

    Google Scholar 

  19. Spratte, K., Chi, L. F. & Riegler, H. Physisorption instabilities during dynamic Langmuir wetting. Europhys. Lett. 25, 211–217 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Erikson, L. G. T., Cleasson, P. M., Ohnishi, S. & Hato, M. Stability of dimethyldioctadecylammonium bromide Langmuir-Blodgett films on mica in aqueous salt solutions—implications for surface force measurements. Thin Solid Films 300, 240–255 (1997).

    Article  ADS  Google Scholar 

  21. Langer, J. S. Issues and opportunities in materials research. Phys. Today 24–31 (1992).

  22. Zasadzinski, J. A. N. & Schneider, M. B. Ripple wavelength, amplitude, and configuration in lyotropic liquid crystals as a function of effective headgroup size. J. Phys. (France) 48, 2001–2011 (1987).

    Article  CAS  Google Scholar 

  23. Maske, H. A., Havlin, S., King, P. R. & Stanley, E. Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997).

    Article  ADS  Google Scholar 

  24. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Weis, R. M. & McConnell, H. M. Cholesterol stabilizes the crystal-liquid interface in phospholipid monolayers. J. Phys. Chem. 89, 4453–4459 (1985).

    Article  CAS  Google Scholar 

  26. Chunbo, Y. et al. Lanthanide ion induced formation of stripes domain structure in phospholipid Langmuir-Blodgett monolayers film observed by atomic force microscopy. Surf. Sci. 366, L729–L734 (1996).

    Article  Google Scholar 

  27. Biebuyck, H. A. & Whitesides, G. M. Self-organisation of organic liquids on patterned self-assembled monolayers of alkanthiols on gold. Langmuir 10, 2790–2793 (1994).

    Article  CAS  Google Scholar 

  28. Kim, E., Xia, Y. & Whitesides, G. M. Polymer microstructures formed by moulding in capillaries. Nature 376, 581–584 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Xia, Y. & Whitesides, G. M. Soft Lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Anczykowski, B., Gotsmann, B., Fuchs, H., Cleveland, J. P. & Elings, V. B. How to measure energy dissipation in dynamic mode atomic force microscopy. Appl. Surf. Sci. 140, 376–382 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Schmid for providing the Au55 clusters. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleiche, M., Chi, L. & Fuchs, H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature 403, 173–175 (2000). https://doi.org/10.1038/35003149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing