Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detectability of γ-rays from clumps of dark matter

Abstract

IF the dark matter in our Galaxy is made up of weakly interacting massive particles (WIMPs) with masses of the order of several GeV (for example, photinos or Higgsinos), γ-rays produced by their annihilation would in principle be observable1,2. But the expected flux3 from a smoothly distributed dark matter halo4,5 is much smaller than the observed diffuse background6, and although narrow lines might be produced, their intensity would be much too low to see with the Gamma Ray Observatory (GRO)3,7. A complementary approach is to consider unique spatial signatures. Numerical simulations of galaxy formation8 show that even in the central bulge of the Galaxy, the mean density of the dark matter could be equal to that of the stars. If this were so, GRO could see the Galactic Centre as a source of annihilating dark matter1,3. Other lumps formed as part of the hierarchical formation of the Galaxy could also produce sources that would be recognized by the shape of their continuum spectrum2,3 and a line feature in sufficiently bright sources3,7. Even Geminga9,10, the second strongest source of γ-rays at energies greater than 50 MeV, could be annihilating dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Silk, J. & Bloemen, H. Astrophys. J. 313, L47–L50 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Stecker, F. Phys. Lett. B201, 529–532 (1988).

    Article  CAS  Google Scholar 

  3. Stecker, F. W. & Tylka, A. J. Astrophys. J. 343, 169–176 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Caldwell, J. R. & Ostriker, J. P. Astrophys. J. 251, 61–87 (1981).

    Article  ADS  Google Scholar 

  5. Kuijken, K. & Gilmore, G. Mon. Not. R. astr. Soc. 239, 571–603 (1989).

    Article  ADS  Google Scholar 

  6. Fichtel, B. C., Simpson, G. & Thompson, D. Astrophys. J. 222, 833–849 (1977).

    Article  ADS  Google Scholar 

  7. Bouquet, A., Salati, P. & Silk, J. Phys. Rev. D40, 3168–3186 (1989).

    ADS  CAS  Google Scholar 

  8. Carlberg, R. G., Lake, G. & Norman, C. A. Astrophys. J. 300, L1–L4 (1986).

    Article  ADS  Google Scholar 

  9. Thompson, D. J., Fichtel, C. E., Hartman, R. C., Kniffen, D. A. & Lamb, R. C. Astrophys. J. 213, 252–268 (1977).

    Article  ADS  Google Scholar 

  10. Bignami, G. F. in Cosmic Radiation in Contemporary Astrophysics (ed. Shapiro M. M.) 175–192 (Reidel, Dordecht, 1986).

    Book  Google Scholar 

  11. Lake, G. Astrophys. J. (in the press).

  12. Peebles, P. J. E. Astrophys J. (in the press).

  13. Braunschweig, W. et al. Z. Phys. C45, 193–208 (1989).

    CAS  Google Scholar 

  14. Aguilar, L. & White, S. D. M. Astrophys. J. 307, 97–109 (1986).

    Article  ADS  Google Scholar 

  15. Gott, J. R. A. Rev. Astr. Astrophys. 15, 235–66 (1977).

    Article  ADS  Google Scholar 

  16. Carr, B. J. & Lacey, C. G. Astrophys. J. 316, 23–35 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Ostriker, J. P., Spitzer, L. & Chevalier, R. A. Astrophys. J. 176, L51–L56 (1972).

    Article  ADS  Google Scholar 

  18. Hermsen, W. et al. Nature 269, 494–495 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Aaronson, M. & Olszewski, E. in IAU Symp. 177 Dark Matter in the Universe (eds Kormendy, J. & Knapp, J.) 153–165 (Reidel, Dordecht, 1987).

    Book  Google Scholar 

  20. Sommer-Larsen, J. & Christensen, P. R. Mon. Not. R. astr. Soc. 225, 499–299 (1988).

    Article  ADS  Google Scholar 

  21. Doinidis, S. P. & Beers, T. C. Astrophys. J. 340, L57–L60 (1989).

    Article  ADS  Google Scholar 

  22. Peebles, P. J. E. Astrophys. J. 277, 470–477 (1985).

    Article  ADS  Google Scholar 

  23. Lake, G. Astr. J. 98, 1554–1556 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Bahcall, J. N. Astrophys. J. 287, 926–944 (1985).

    Article  ADS  Google Scholar 

  25. Bignami, G. F., Caraveo, P. A. & Lamb, R. C. Astrophys. J. 272, L9–L13 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Halpern, J. & Tytler, D. Astrophys. J. 330, 201–217 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Nulsen, P. & Fabian, A. Nature 312, 48–50 (1988).

    Article  ADS  Google Scholar 

  28. Quinn, P. & Goodman, J. Astrophys. J. 309, 472–484 (1986).

    Article  ADS  Google Scholar 

  29. Caillault, J-P. & Helfand, D. Astrophys. J. 289, 279–299 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, G. Detectability of γ-rays from clumps of dark matter. Nature 346, 39–40 (1990). https://doi.org/10.1038/346039a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346039a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing