Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of methane and carbon dioxide in gold deposition

Abstract

VEIN-HOSTED gold deposits in low- to medium-grade metamorphic terrains are commonly associated with low-salinity hydrothermal fluids rich in CO2 and/or CH41–12. Fluid inclusion studies of gold mineralization indicate that the ore fluid comprised co-existing CO2/CH4-rich and H2O-rich phases, and that phase separation played an integral part in gold deposition3,5,6,8–12. In hydrothermal solution gold is present as the Au(HS)2 complex13. Precipitation of gold caused by decreasing ligand activity involving the formation of iron sulphides from wall-rock iron oxides and silicates13 is clearly relevant to gold deposits associated with iron formations and iron-rich igneous rock14,15. It cannot, however, be used to explain the common association of gold deposits with black shales or schists3,5,7,8,16, where wall-rock iron is in the form of sulphides, and therefore generally in equilibrium with the hydrothermal fluid, or with granitoids or felsic volcanics, where the amount of iron is low. This latter association may be explained by the partitioning of H2S into the non-aqueous phase during fluid immiscibility10,12, but the general applicability of this mechanism is not known. Here we present a new synthesis of experimental data from a variety of sources which puts this mechanism on a semi-quantitative basis, and suggest that it may be applicable to a wide variety of hydrothermal gold environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boyle, R. W. The Geochemistry of Gold and its Deposits, Geol. Surv. Can. Bull. No. 280 (1979).

    Google Scholar 

  2. Goldfarb, R. J., Leach, D. L., Miller, M. L. & Pickthorn, W. J. Turbidite-hosted Gold Deposits, Geol. Ass. Can. Spec. Pap. 32, 87–105 (1986).

    Google Scholar 

  3. Read, J. J. & Meinert, L. D. Econ. Geol. 81, 1760–1774 (1986).

    Article  CAS  Google Scholar 

  4. Smith, T. J., Cloke, P. L. & Kesler, S. E. Econ. Geol. 79, 1265–1285 (1984).

    Article  CAS  Google Scholar 

  5. Bottrell, S. H., Shepherd, T. J., Yardley, B. W. D. & Dubessy, J. J. geol. Soc. Lond. 145, 139–145 (1988).

    Article  CAS  Google Scholar 

  6. Walsh, J. F., Kesler, S. E., Duff, D. & Cloke, P. L. Econ. Geol. 83, 1347–1367 (1988).

    Article  CAS  Google Scholar 

  7. Boiron, M. C. et al. Terra Abstr. 1, 28 (1989).

    Google Scholar 

  8. Naden, J. & Shepherd, T. J. Terra Abstr. 1, 24 (1989).

    Google Scholar 

  9. Colvine, A. C. et al. Ontario Geol. Surv. Misc. Pap. 139 (1988).

  10. Colvine, A. C. et al. Ontario Geol. Surv. Open File Rep. No. 5524 (1988).

  11. Robert, F. & Kelly, W. C. Econ. Geol. 82, 1464–1482 (1987).

    Article  CAS  Google Scholar 

  12. Spooner, E. T. C. et al. Ontario Geol. Surv. Misc. Pap. 136, 35–56 (1987).

  13. Seward, T. M. Geochim. cosmochim. Acta 37, 379–399 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Groves, D. I., Philips, N., Ho, S. E. Houstoun, S. M. & Standing, C. A. Econ. Geol. 82, 2045–2058 (1987).

    Article  CAS  Google Scholar 

  15. Neal, F. & Philips, G. N. Econ. Geol. 82, 1679–1694 (1987).

    Article  Google Scholar 

  16. Ceplecha, J. C. & Wall, V. J. Bull. Aust. Soc. Explor. Geophys. 7, 40 (1976).

    Article  Google Scholar 

  17. Gehrig, M., Lentz, H. & Franck, E. U. Ber. Bunsenges. phys. Chem. 90, 525–533 (1986).

    Article  CAS  Google Scholar 

  18. Krader, T., Franck, E. U. Physica B/C139–140, 66–69 (1986).

    Google Scholar 

  19. Haas, J. L. Jr. US. Geol. Surv., Open Rep. No. 78-1004 (1978).

  20. Huang, S. S., Leu, A. D., Ng, H. J. & Robinson, D. B. Fluid Phase Equil. 19, 21–32 (1985).

    Article  CAS  Google Scholar 

  21. D'Amore, F. & Tuesdell, A. H. Sci. Geol. Bull. (in the press).

  22. Pichavant, M. C., Ramboz, C. & Weisbrod, A. Chem. Geol. 37, 1–27 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Fyon, J. A. et al. Ontario Geol. Surv. Open File Rep. No. 5464 (1983).

  24. Weir, R. H. & Kerrich, D. M. Econ. Geol. 82, 328–344 (1987).

    Article  CAS  Google Scholar 

  25. Haynes, S. J. Turbidite-hosted Gold deposits, Geol. Ass. Can. Spec. Pap. 32, 161–177 (1986).

    Google Scholar 

  26. Padgham, W. A. Turbidite-hosted Gold Deposits, Geol. Ass. Can. Spec. Pap. 32, 119–134 (1986).

    Google Scholar 

  27. Shepherd, T. J., Bottrell, S. H. & Miller, M. F. J. geochem. Explor. (in the press).

  28. Barton, P. B., Bethke, P. M. & Roedder, E. Econ. Geol. 72, 1–24 (1977).

    Article  CAS  Google Scholar 

  29. Vikre, P. G. Econ. Geol. 80, 363–393 (1985).

    Article  Google Scholar 

  30. Brown, K. L. Econ. Geol. 81, 979–983 (1986).

    Article  CAS  Google Scholar 

  31. Drummond, S. E. & Ohomoto, H. Econ. Geol. 80, 126–147 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naden, J., Shepherd, T. Role of methane and carbon dioxide in gold deposition. Nature 342, 793–795 (1989). https://doi.org/10.1038/342793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing