Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcitonin gene-related peptide regulates calcium current in heart muscle

Abstract

THE influx of Ca2+ due to the transmembrane calcium current, ICa, has a fundamental role in cardiac pacemaker activity, in the action potential plateau and in excitation-contraction coupling. Both sympathetic and parasympathetic neurotransmitters can modulate ICa (ref. 1). Recent studies indicate that in both the cardiovascular2-7 and the central nervous systems8,9, nerve varicosities exist that contain a novel non-adrenergic, non-cholinergic peptide—calcitonin gene-related peptide (CGRP)10. Although CGRP is known to exert strong positive inotropic3-5,7,11 and chronotropic3,11 effects, as well as to cause vasodilatation2,6,12,13, very little is known about the ionic mechanisms of these effects14,15. Here we report that CGRP dramatically increases ICa in single heart cells. Although this CGRP-induced increase in ICa resembles the effect of β-adrenergic agonists, our results demonstrate some significant differences between the effects of CGRP and these agonists: (1) the increase due to CGRP cannot be blocked by β-adrenergic antagonists; (2) the CGRP-induced effect is transient; and, (3) CGRP can inhibit isoproterenol-stimulated ICa. Our results provide the first electrophysiological evidence that CGRP can significantly modulate ICa in the heart, and suggest a new additional mechanism for the neurogenic control of cardiac function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

    Article  CAS  Google Scholar 

  2. Shoji, T., Ishihara, H., Ishikawa, T., Saito, A. & Goto, K. Naunyn-Schmiedebergs Archs Pharmak. 336, 438–444 (1987).

    Article  CAS  Google Scholar 

  3. Miyauchi, T., Ishikawa, T., Sugishita, Y., Saito, A. & Goto, K. J. cardiovasc. Pharmacol. 10, 675–682 (1987).

    Article  CAS  Google Scholar 

  4. Saito, A., Ishikawa, T., Kimura, S. & Goto, K. J. Pharma. exp. Ther. 243, 731–736 (1987).

    CAS  Google Scholar 

  5. Ishikawa, T., Okamura, N., Saito, A., Masaki, T. & Goto, K. Circulation Res. 63, 726–734 (1988).

    Article  CAS  Google Scholar 

  6. Kawasaki, H., Takasaki, K., Saito, A. & Goto, K. Nature 335, 164–167 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Saito, A., Kimura, S. & Goto, K. Am. J. Physiol. 250, H693–H698 (1986).

    CAS  PubMed  Google Scholar 

  8. Rosenfeld, M. G. et al. Nature 304, 129–135 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Mason, R. T. et al. Nature 308, 653–655 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Franco-Cereceda, A. & Lundberg, J. M. Naunyn-Schmiedebergs Archs Pharmak, 337, 649–655 (1988).

    Article  CAS  Google Scholar 

  12. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. & MacIntire, I. Nature 313, 54–56 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Edvinsson, L., Fredholm, B. B., Hamel, E. & Jansen, I. Neurosci. Lett. 58, 213–217 (1985).

    Article  CAS  Google Scholar 

  14. Satoh, M. et al. Peptides 7, 631–635 (1986).

    Article  CAS  Google Scholar 

  15. Marshall, I. & Craig, R. K. in Vasodilatation, 81–87 (ed. Vanhoutte, P. M.) (Raven, New York 1988).

    Google Scholar 

  16. Kameyama, M., Hofmann, F. & Trautwein, W. Pflügers Arch. ges. Physiol. 405, 285–293 (1985).

    Article  CAS  Google Scholar 

  17. Goltzman, D. & Mitchell, J. Science 227, 1343–1345 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Sigrist, S. et al. Endocrinology 119, 381–389 (1986).

    Article  CAS  Google Scholar 

  19. Maton, P. N. et al. Am. J. Physiol. 254, G789–G794 (1988).

    ADS  CAS  PubMed  Google Scholar 

  20. Giles, W., Nakajima, T., Ono, K. & Shibata, E. F. J. Physiol., Lond. 415, 233–249 (1989).

    Article  CAS  Google Scholar 

  21. Ishikawa, T., Okamura, N., Saito, A. & Goto, K. J. mol. cell. Cardiol. 19, 723–727 (1987).

    Article  CAS  Google Scholar 

  22. Fisher, R. A., Robertson, S. M. & Olson, M. S. Endocrinology 123, 106–112 (1988).

    Article  CAS  Google Scholar 

  23. Ohhashi, T. & Jacobowitz, D. M. Peptides 9, 613–617 (1988).

    Article  CAS  Google Scholar 

  24. Giles, W., van Ginneken, A. & Shibata, E. F. in Cardiac Muscle: The Regulation of Excitation and Contraction, 1–27 (ed. Nathan, R. D) (Academic, Orlando 1986).

    Book  Google Scholar 

  25. Franco-Cereceda, A., Saria, A. & Lundberg, J. M. Acta Physiol. scand. 131, 319–320 (1987).

    Article  CAS  Google Scholar 

  26. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers. Arch. ges Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, K., Delay, M., Nakajima, T. et al. Calcitonin gene-related peptide regulates calcium current in heart muscle. Nature 340, 721–724 (1989). https://doi.org/10.1038/340721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340721a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing