Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Similarities between prokaryotic and eukaryotic cyclic AMP-responsive promoter elements

Abstract

ORGANISMS as diverse as bacteria and man contain genes that show transcriptional induction when the intracellular concentration of cAMP is increased1,2. This regulated transcriptional response is mediated through specific promoter elements located, in general, upstream from the transcription start site. In Escherichia coli the element responsible for cAMP-mediated transcriptional induction is the binding site for the cAMP-receptor protein (CAP). In mammalian cells the cAMP regulatory element is composed of one or more binding sites for various transcription factors2. In many instances the cAMP regulatory element contains binding sites for a family of proteins referred to as ATF. Here we provide evidence that some prokaryotic and mammalian cAMP-response elements are functionally related. First, we show that mammalian ATF binds specifically to some E. coli CAP sites, and conversely E. coli CAP binds specifically to some mammalian ATF sites. Second, we demonstrate that an E. coli CAP binding site can confer cAMP-inducibility onto a mammalian gene when assayed in transfected mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. de Crombrugghe, B., Busby, S. & Buc, H. Science 224, 831–838 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Roesler, W. J., Vandenbark, G. R. & Hanson, R. W. J. biol. Chem. 263, 9063–9066 (1988).

    CAS  PubMed  Google Scholar 

  3. Lee, K. A. W. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8355–8359 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Lin, Y. S. & Green, M. R. Proc. natn. Acad. Sci. U.S.A. 85, 3396–3400 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Montminy, M. R. & Bilezsikjian, L. M. Nature 328, 175–178 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hai, T., Liu, F., Allegretto, E. A., Karin, M. & Green, M. R. Genes Dev. 2, 1216–1226 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, Y. S. & Green, M. R. Proc. natn. Acad. Sci. U.S.A. 86, 109–113 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Deutsch, P. J., Hoeffler, J. P., Jameson, J. L., Lin, J. C. & Habener, J. F. J. biol. Chem. 263, 18466–18472 (1988).

    CAS  PubMed  Google Scholar 

  9. Kenei-lshii, C. & Ishii, S. Nucleic Acids Res. 17, 1521–1536 (1989).

    Article  Google Scholar 

  10. Lee, K. A. W., Fink, J. S., Goodman, R. H. & Green, M. R. Molec. cell. Biol. (in the press).

  11. Berg, O. G. & von Hippel, P. H. J. molec Biol. 200, 709–723 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Tsukada, T., Fink, J. S., Mandel, G. & Goodmanm, R. H. J. biol. Chem. 262, 8743–8747 (1987).

    CAS  PubMed  Google Scholar 

  13. Nagamine, Y. & Reich, E. Proc. natn. Acad. Sci. U.S.A. 82, 4606–4610 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Comb, M., Burnberg, N. C., Seasholtz, A., Herbert, E. & Goodman, H. M. Nature 323, 353–356 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Allison, L. A., Moyle, M. Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Brennan, R. G. & Matthews, B. W. J. biol. Chem. 264, 1903–1906 (1989).

    CAS  PubMed  Google Scholar 

  18. Magasanik, B. Trends biochem. Sci. 13, 475–479 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Popham, D. L., Szeto, D., Keener, J. & Kustu, S. Science 243, 629–635 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dallman, G., Papp, P. & Orosz, L. Nature 330, 398–401 (1987).

    Article  ADS  Google Scholar 

  21. Wiederrecht, G., Shuey, D. J., Kibbe, W. A. & Parker, C. S. Cell 48, 507–515 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Sorger, P. K., Lewis, M. J. & Pelham, H. R. B. Nature 329, 81–84 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Larson, J. S., Schuetz, T. J. & Kingston, R. E. Nature 335, 372–375 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Dunn, T. M., Hahn, S., Ogden, S. & Schleif, R. F. Proc. natn. Acad. Sci. U.S.A. 81, 5017–5020 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Aiba, H., Fujimoto, S. & Ozaki, N. Nucleic Acids Res. 10, 1345–1361 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taniguchi, T., O'Neill, M. & De Crombrugghe, B. Proc. natn. Acad. Sci. U.S.A. 76, 5090–5094 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YS., Green, M. Similarities between prokaryotic and eukaryotic cyclic AMP-responsive promoter elements. Nature 340, 656–659 (1989). https://doi.org/10.1038/340656a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340656a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing