Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The POU domain is a bipartite DNA-binding structure

Abstract

The POU domain1 (pronounced 'pow') is a highly charged 155–162-amino-acid (aa) region of sequence similarity contained within three mammalian transcription factors. Pit-1 (ref. 2), Oct-1 (ref. 3) and Oct-2 (ref. 4), and the product of the nematode gene unc-86 (ref. 5) which is involved in determining neural cell lineage. This domain consists of two subdomains, a C-terminal homoeo domain and an N-terminal POL -specific region separated by a short nonconserved linker; the sequence relationship shows that the POU homoeo domains form a distinct POU-related family. In the ubiquitous and lymphoid-specific octamer-motif binding proteins Oct-1 and Oct-2, the POU domain is sufficient for sequence-specific DNA binding3,4. Homoeobox domains contain a helix-turn-helix DNA-binding motif6,7, first identified in bacterial repressers8. The helix-turn-helix region of the POU domain is important for DNA binding3,9 and, in other classes of homoeo-containing proteins, the entire homoeo domain is sufficient for DNA binding10–12; thus the new POU-specific region could be involved in other functions such as protein–protein interactions. Nevertheless, we show here that in fact the POU domain is a novel bipartite DNA-binding structure in which the POU homoeo and POU-specific regions form two subdomains that are both required for DNA binding but are held together by a flexible linker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herr, W. et al. Genes Dev. 2, 1513–1516 (1988).

    Article  CAS  Google Scholar 

  2. Ingraham, H. A. et al. Cell 55, 519–529 (1988).

    Article  CAS  Google Scholar 

  3. Sturm, R. A., Das, G. & Herr, W. Genes Dev. 2, 1582–1599 (1988).

    Article  CAS  Google Scholar 

  4. Clerc, R. G., Corcoran, L. M., LeBowitz, H. H., Baltimore, D. & Sharp, P. A. Genes Dev. 2, 1570–1581 (1988).

    Article  CAS  Google Scholar 

  5. Finney, M., Ruvkun, G. & Horvitz, H. R. Cell (in the press).

  6. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Otting, G. et al. EMBO J. (in the press).

  8. Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M. & Pabo, C. O. Nature 298, 447–451 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Ko, H.-S., Fast, P., McBride, W. & Staudt, L. M. Cell 55, 135–144 (1988).

    Article  CAS  Google Scholar 

  10. Desplan, C., Theis, J. & O'Farrell, P. H. Cell 54, 1081–1090 (1988).

    Article  CAS  Google Scholar 

  11. Hoey, T., Warrior, R., Manak, J. & Levine, M. Molec. cell. Biol. 8, 4598–4607 (1988).

    Article  CAS  Google Scholar 

  12. Muller, M. et al. EMBO J. (in the press).

  13. Staudt, L. M. et al. Nature 323, 640–643 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Fletcher, C., Heintz, N. & Roeder, R. G. Cell 51, 773–781 (1987).

    Article  CAS  Google Scholar 

  15. Pruijn, G. J. M., van Driel, W. & van der Vliet, P. C. Nature 322, 656–659 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Sturm, R., Baumruker, T., Franza, B. R. Jr & Herr, W. Genes Dev. 1, 1147–1160 (1987).

    Article  CAS  Google Scholar 

  17. O'Neill, E. A. et al. Science 241, 1210–1213 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Baumruker, T., Sturm, R. & Herr, W. Genes Dev. 2, 1400–1413 (1988).

    Article  CAS  Google Scholar 

  19. Pruijn, G. J. M., van Miltenburg, R. T., Claessens, J. A. J. & van der Vliet, P. C. J. Virol. 62, 3092–3102 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, J. E., Ptashne, M. & Harrison, S. C. Nature 326, 846–852 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Hochschild, A., Irwin, N. & Ptashne, M. Cell 32, 319–325 (1983).

    Article  CAS  Google Scholar 

  22. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  23. Wolffe, A. P., Jordan, E. & Brown, D. D. Cell 44, 381–389 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturm, R., Herr, W. The POU domain is a bipartite DNA-binding structure. Nature 336, 601–604 (1988). https://doi.org/10.1038/336601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing