Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quisqualate receptors are specifically involved in cerebellar synaptic plasticity

Abstract

Long-term modification of transmission efficacy at synapses is the cellular basis of memory and learning1–4. A special type of synaptic plasticity in the cerebellum was postulated theoretically5,6, and has since been verified4,7–9. Each cerebellar Purkinje cell (PC) receives two distinct excitatory inputs, one from parallel fibres (PFs) and the other from a climbing fibre (CF). When these two types of inputs are conjunctively activated, PF–PC transmission undergoes long-term depression (LTD)4,7–9. Accumulated evidence suggests that LTD plays a role in the motor learning processes of the cerebellum10–12. At the molecular level, LTD appears to be caused by desensitization of receptor molecules in PC dendrites towards the PF neurotransmitter4, presumably L-glutamate (Glu) (ref. 12). Glu receptors are heterogeneous and can be divided into several subtypes13–15. In this study, we compared the potency of several Glu agonists in inducing LTD and found a highly selective dependency of LTD on the quisqualate(QA)-selective subtype of Glu receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, R. V. P. & Lømo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Alcon, D. L. Science 226, 1037–1045 (1984).

    Article  ADS  Google Scholar 

  4. Ito, M., Sakurai, M. & Tongroach, P. J. Physiol., Lond. 324, 113–134 (1982).

    Article  CAS  Google Scholar 

  5. Marr, D. J. Physiol., Lond. 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  6. Albus, J. S. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  7. Ito, M. & Kano, M. Neurosci. Lett. 33, 253–258 (1982).

    Article  CAS  Google Scholar 

  8. Ekerot, C.-F. & Kano, M. Brain Res. 342, 357–360 (1985).

    Article  CAS  Google Scholar 

  9. Sakurai, M. Neurosci. Lett. Suppl. 22, S26 (1985).

    Google Scholar 

  10. Ito, M. A. Rev. Neurosci. 5, 275–296 (1982).

    Article  CAS  Google Scholar 

  11. Watanabe, E. Brain Res. 297, 169–174 (1984).

    Article  CAS  Google Scholar 

  12. Ito, M. The Cerebellum and Neural Control, 81–83 (Raven, New York, 1984).

    Google Scholar 

  13. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Tox. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  14. McLennan, H. Prog. Neurobiol. 20, 251–271 (1983).

    Article  CAS  Google Scholar 

  15. Foster, A. C. & Fagg, G. E. Brain Res. Rev. 7, 103–164 (1984).

    Article  CAS  Google Scholar 

  16. Crepel, F., Dupont, J.-L. & Gardette, R. Brain Res. 279, 311–315 (1983).

    Article  CAS  Google Scholar 

  17. Kimura, H., Okamoto, K. & Sakai, Y. J. Physiol., Lond. 365, 103–119 (1985).

    Article  CAS  Google Scholar 

  18. Herndon, R. M. & Coyle, J. T. in Kainic Acid as a Tool in Neurobiology (eds McGeer, G., Olney, J. W. & McGeer, P. L.) 189–200 (Raven, New York, 1978).

    Google Scholar 

  19. Henke, H., Beaudet, A. & Cuénod, M. Brain Res. 219, 95–105 (1981).

    Article  CAS  Google Scholar 

  20. Quinlan, J. E. & Davies, J. Neurosci. Lett. 60, 39–46 (1985).

    Article  CAS  Google Scholar 

  21. Ekerot, C.-F. & Oscarsson, O. J. Physiol., Lond. 318, 207–221 (1981).

    Article  CAS  Google Scholar 

  22. Llinàs, R. & Sugimori, M. J. Physiol., Lond. 305, 197–213 (1980).

    Article  Google Scholar 

  23. Ishida, A. T. & Neyton, J. Proc. natn. Acad. Sci. U.S.A. 82, 1837–1841 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, M., Kato, M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325, 276–279 (1987). https://doi.org/10.1038/325276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing