Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+

Abstract

The inwardly rectifying K channel provides the resting K conductance in a variety of cells1–4. This channel acts as a valve or diode, permitting entry of K+ under hyperpolarization, but not its exit under depolarization. This behaviour, termed inward rectification, permits long depolarizing responses which are of physiological significance for the pumping function of the heart and for fertilization of egg cells5. Little is known about the outward currents through the inwardly rectifying K channel, despite their great physiological importance, and the mechanism of inward rectification itself is unknown. We have used improved patch clamp techniques to control the intracellular media, and have recorded the outward whole-cell and single-channel currents. We report here that the channel conductance is ohmic and that the well-known inward rectification of the resting K conductance is caused by rapid closure of the channel accompanied by a voltage-dependent block by intracellular Mg2+ ions at physiological concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. Archs Sci. Physiol. 3, 285–299 (1949).

    CAS  Google Scholar 

  2. Hall, A. E., Hutter, O. F. & Noble, D. J. Physiol., Lond. 166, 225–240 (1963).

    Article  CAS  Google Scholar 

  3. Kandel, E. R. & Tauc, L. J. Physiol., Lond. 183, 287–304 (1966).

    Article  CAS  Google Scholar 

  4. Hagiwara, S. & Takahashi, K. J. Membrane Biol. 18, 61–80 (1974).

    Article  CAS  Google Scholar 

  5. Hille, B. Ionic Channels of Excitable Membranes, 109–112 (Sinauer, Massachusetts, 1984).

    Google Scholar 

  6. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  7. Matsuda, H. & Noma, A. J. Physiol., Land. 357, 553–573 (1984).

    Article  CAS  Google Scholar 

  8. Noma, A. & Tsuboi, N. J. Physiol., Lond. (in the press).

  9. Hagiwara, S., Miyazaki, S. & Rosenthal, N. P. J. gen. Physiol. 67, 621–638 (1976).

    Article  CAS  Google Scholar 

  10. Hestrin, S. J. Physiol., Lond. 317, 497–508 (1981).

    Article  CAS  Google Scholar 

  11. Sakmann, B. & Trube, G. J. Physiol., Lond. 347, 641–657 (1984).

    Article  CAS  Google Scholar 

  12. Kameyama, M., Kiyosue, T. & Soejima, M. Jap. J. Physiol. 33, 1039–1056 (1983).

    Article  CAS  Google Scholar 

  13. Kurachi, Y. J. Physiol., Lond. 366, 365–385 (1985).

    Article  CAS  Google Scholar 

  14. Marty, A. Pflügers Arch. ges. Physiol. 396, 179–181 (1983).

    Article  CAS  Google Scholar 

  15. Yellen, G. J. gen. Physiol. 84, 157–186 (1984).

    Article  CAS  Google Scholar 

  16. Lansman, J. B., Hess, P. & Tsien, R. W. J. gen. Physiol. 88, 321–347 (1986).

    Article  CAS  Google Scholar 

  17. Matsuda, H. Pflügers Arch. ges. Physiol. 407, 465–475 (1986).

    Article  CAS  Google Scholar 

  18. Horie, M., Irisawa, H. & Noma, A. J. Physiol., Lond. (in the press).

  19. Jaslove, S. W. & Brink, P. R. Nature 323, 63–65 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Adrian, R. H. Prog. Biophys. molec. Biol. 19, 341–369 (1969).

    Article  Google Scholar 

  21. Horowicz, P., Gage, P. W. & Eisenberg, R. S. J. gen. Physiol. 51, 193–203s (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Armstrong, C. M. in Membranes: A Series of Advances vol. 3 (ed. Eisenman, G.) 325–358 (Dekker, New York, 1975).

    Google Scholar 

  23. Hille, B. & Schwarz, W. J. gen. Physiol. 72, 409–442 (1978).

    Article  CAS  Google Scholar 

  24. Slanden, N. B. & Stanfield, P. R. Pflügers Arch. ges. Physiol. 378, 173–176 (1978).

    Article  Google Scholar 

  25. Ciani, S., Krasne, S., Miyazaki, S. & Hagiwara, S. J. Membrane Biol. 44, 103–134 (1978).

    Article  CAS  Google Scholar 

  26. Fabiato, A. & Fabiato, F. J. Physiol., Paris 75, 463–505 (1979).

    CAS  Google Scholar 

  27. Tsien, R. Y. & Rink, T. J. Biochim. biophys. Acta 599, 623–638 (1980).

    Article  CAS  Google Scholar 

  28. Hagiwara, S. & Ohmori, H. J. Physiol., Lond. 331, 231–252 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, H., Saigusa, A. & Irisawa, H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325, 156–159 (1987). https://doi.org/10.1038/325156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing