Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the Sec7 domain of the Arf exchange factor ARNO

Abstract

Small G proteins switch from a resting, GDP-bound state to an active, GTP-bound state. As spontaneous GDP release is slow, guanine-nucleotide-exchange factors (GEFs) are required to promote fast activation of small G proteins through replacement of GDP with GTP in vivo1. Families of GEFs with no sequence similarity to other GEF families have now been assigned to most families of small G proteins. In the case of the small G protein Arf1, the exchange of bound GDP for GTP promotes the coating of secretory vesicles in Golgi traffic2. An exchange factor for human Arf1, ARNO3, and two closely related proteins, named cytohesin 1 (ref. 4) and GPS1 (ref. 5), have been identified. These three proteins are modular proteins with an amino-terminal coiled-coil, a central Sec7-like domain and a carboxy-terminal pleckstrin homology domain. The Sec7 domain contains the exchange-factor activity3. It was first found in Sec7, a yeast protein involved in secretion6, and is present in several other proteins, including the yeast exchange factors for Arf, Gea1 and Gea2 (79). Here we report the crystal structure of the Sec7 domain of human ARNO at 2 Å resolution and the identification of the site of interaction of ARNO with Arf.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of ARNO-Sec7.
Figure 2: Topography of the conserved motives of ARNO-Sec7.
Figure 3: The putative site of binding to Arf.
Figure 4: Nucleotide-exchange activity of ARNO-Sec7 mutants on Arf1.

Similar content being viewed by others

References

  1. Quilliam, L. A., Khosravi-Far, R., Huff, S. Y., Solski, P. A. & Der, C. J. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17, 395–404 (1995).

    Article  CAS  Google Scholar 

  2. Scheckman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  ADS  Google Scholar 

  3. Chardin, P. et al. Ahuman exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481–484 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Meacci, E., Tsai, S. C., Adamik, R., Moss, J. & Vaughan, M. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl Acad. Sci. 94, 1745–1748 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    Article  CAS  Google Scholar 

  6. Novick, P., Ferro, S. & Schekman, R. Orders of events in the yeast secretory pathway. Cell 25, 461–469 (1981).

    Article  CAS  Google Scholar 

  7. Peyroche, A., Paris, S. & Jackson, C. L. Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384, 479–481 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Shevell, D. E. et al. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77, 1051–1062 (1994).

    Article  CAS  Google Scholar 

  9. Morinaga, N., Moss, J. & Vaughan, M. Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl Acad. Sci. USA 94, 12926–12931 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Huber, A. H., Nelson, J. & Wies, W. I. Three-dimensional structure of the Armadillo repeat of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  Google Scholar 

  11. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S. & Leberman, R. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 Å resolution. Nature 379, 511–518 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprintzl, M. & Sigler, P. Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus. Nature Struct. Biol. 4, 650–656 (1997).

    Article  CAS  Google Scholar 

  13. Yu, H. & Schreiber, S. L. Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature 376, 788–791 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435 (1997).

    Article  CAS  Google Scholar 

  15. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Scheffzek, K. et al. The ras-rasGAP complex: structural basis for GTPase activation and its loss in oncogenic mutants. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

  17. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 Å of RhoA and its GTPasep-activating protein in complex with a transition-state analog. Nature 389, 758–762 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Paris, S. et al. Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem. 272, 22221–22226 (1997).

    Article  CAS  Google Scholar 

  19. Jacquet, E., Baouz, S. & Parmeggiani, A. Characterization of a mammalian C-CDC25Mm exchange factor and kinetic properties of the exchange reaction intermediate p21.C-CDC25Mm. Biochemistry 34, 12347–12354 (1995).

    Article  CAS  Google Scholar 

  20. Verroti, A. C. et al. RAS residues that are distant form the GDP binding site play a critical role in dissociation factor-stimulated release of GDP. EMBO J. 11, 2855–2862 (1992).

    Article  Google Scholar 

  21. Segal, M., Willumsen, B. & Levitzk, A. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc. Natl Acad. Sci. USA 90, 5564–5568 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Antonny, B., Béraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    Article  CAS  Google Scholar 

  23. Schimmöller, F., Itin, C. & Pfeffer, S. Vesicle traffic: get your coat! Curr. Biol. 7, R235–R237 (1997).

    Article  Google Scholar 

  24. Amor, J. C., Harrison, D. H., Kahn, R. A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Madej, T., Gibrat, J. F. & Bryant, S. H. Threading a database of protein cores. Proteins Struct. Funct. Genet. 23, 356–369 (1995).

    Article  CAS  Google Scholar 

  26. Schalk, I. et al. Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature 381, 42–48 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Keep, N. H. et al. Amodulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).

    Article  CAS  Google Scholar 

  28. Kolanus, W. et al. αLβ2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86, 233–242 (1996).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  30. De la Fortelle, E. & Bricogne, G. Maximum-likeliwood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the LURE for making outstation W32 available to us; M. Roth at the ESRF for beamlight assistance at outstation D2AM; S. Bryant and T. Madej for the Protein Data Bank survey with VAST; J.-F. Gibrat for sequence-threading calculations; S. Paris for unpublished observations; and M. Chabre and J. Janin for discussions. This work was supported by the Association pour la Recherche contre le Cancer and by Zénéca Pharma (France). M.M. was supported by an EMBO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Cherfils.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherfils, J., Ménétrey, J., Mathieu, M. et al. Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101–105 (1998). https://doi.org/10.1038/32210

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32210

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing