Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hubble's constant and exploding carbon–oxygen white dwarf models for Type I supernovae

Abstract

The immediate progenitor of a Type I supernova (SN I) is thought to be a mass-accreting carbon–oxygen (C–O) white dwarf in a binary system. When the mass of the white dwarf approaches the Chandrasekhar mass (1.4 M) the C–O nuclear fuel ignites, part of the star is incinerated to radioactive 56Ni, and the thermonuclear energy completely disrupts the star. The optical luminosity results from the trapping and thermalization of the γ rays and positrons emitted by the decay of 56Ni through 56Co to stable 56Fe. The amount of 56Ni synthesized, MNi, and the corresponding peak luminosity, Lmax, can be used with the observed Hubble diagram for SN I to determine the value of Hubble's constant, H0. We argue here that if this model is correct, MNi is in the range 0.4–1.4 M, the best estimate being 0.6 M, and that H0 is in the range 39–73 km s−1 Mpc−1 with a best estimate of 59 km s−1 Mpc−1. This line of reasoning does not require knowledge of the temperature of the supernova and, therefore, is not subject to the uncertainties associated with attempts to determine supernova luminosities and distances by the Baade method1. It relies on the physical correctness of the model, which is subject to independent tests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wagoner, R. V. Astrophys. J. 250, L65–L69 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Arnett, W. D. Astrophys. J. 253, 785–797 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Sutherland, P. G. and Wheeler, J. C. Astrophys. J. 280, 282–297 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Barbon, R., Ciatti, F. & Rosino, L. Astr. Astrophys. 25, 241–248 (1973).

    ADS  Google Scholar 

  5. Branch, D. et al. Astrophys. J. 270, 123–139 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Müller, E. & Arnett, W. D. Astrophys. J. Lett. 261, L109–L115 (1982).

    Article  ADS  Google Scholar 

  7. Müller, E. & Arnett, W. D. in Nucleosynthesis: Problems and Challenges (eds Arnett, W. D. & Truran, J. W.) (University of Chicago, in the press).

  8. Nomoto, K., Thielmann, F.-K. & Yokoi, K. Astrophys. J. 268, 644–658 (1984).

    Article  ADS  Google Scholar 

  9. Woosley, S. E., Axelrod, T. S. & Weaver, T. A. in Stellar Nucleosynthesis (eds Chiosi, C. & Renzini, A.) (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  10. Schurmann, S. R. Astrophys. J. 267, 779–794 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Burstein, D. & Heiles, C. Astrophys. J. 225, 40–55 (1978).

    Article  ADS  Google Scholar 

  12. Branch, D. & Bettis, C. Astr. J. 83, 224–227 (1978).

    Article  ADS  Google Scholar 

  13. Tammann, G. A. in Supernovae: A Survey of Current Research (eds Rees, M. J. & Stoneham, R. J.) 371–403 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  14. Helfand, D. J. in Type I Supernovae (ed. Wheeler, J. C.) 20–24 (University of Texas, Austin, 1980).

    Google Scholar 

  15. Nomoto, K. & Tsuruta, S. Astrophys. J. Lett. 250, L19–L23 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Rust, B. W. thesis, Univ. Illinois, Urbana (1974).

  17. Pskovskii, Y. P. Soviet Astr.-A. J. 21, 675–682 (1977).

    ADS  Google Scholar 

  18. Branch, D. Astrophys. J. 258, 35 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnett, W., Branch, D. & Wheeler, J. Hubble's constant and exploding carbon–oxygen white dwarf models for Type I supernovae. Nature 314, 337–338 (1985). https://doi.org/10.1038/314337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing