Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A composite bolometer as a charged-particle spectrometer

Abstract

The measurement of radioactivity by direct conversion of nuclear radiation into a temperature rise of a calorimeter is as old as nuclear physics itself. As part of a general programme aiming at a determination of the mass of the electron neutrino, we have designed an improved version of a He-cooled composite diamond bolometer with a monolithic germanium thermistor, developed at the Laboratoire de Physique Stellaire et Planetaire (LPSP)1. Our approach, based on an idea by De Rujula2, is to study the shape, near the upper end-point of the internal bremsstrahlung spectrum in electron-capture β decay. The best nucleus for a precise measurement seems to be 163Ho, for which we have determined3 the QEC value to be 2.83±0.05 keV. A particularly interesting possibility is to use total absorption spectrometry4 (calorimetry), in which the radioactive holmium forms part of the sensitive volume of the detector. With 5–6-MeV α particles impinging on the diamond wafer of the bolometer, a full-width-at-half-maximum (FWHM) of 36 keV was obtained at a temperature of 1.3 K. The theoretical resolution at 100 mK is a few electron-volts, so this new detection technique should give greatly enhanced energy resolution compared with present solid-state conductors based on charge carrier collection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leblanc, J., Dambier, G., Coron, N. & Moalic, J. P. French Patents No.75 36103 and 75 36104 (26 Nov. 1975) and US Patent No. 4, 116, 063 26 (Sept. 1978).

  2. De Rújula, A. Nucl. Phys. B188, 414–458 (1981).

    Article  ADS  Google Scholar 

  3. Laegsgaard, E. et al. in Proc. 7th Int. Conf. Atomic Masses and Fundamental Constants (AMCO-7) (ed. Klepper, O.) 652–658 (TDH-Schrittenreihe Wissenschaft und Technik, Darmstadt, 1984).

    Google Scholar 

  4. De Rújula, A. & Lusignoli, M. Phys. Lett. 118B, 429–434 (1982).

    Article  Google Scholar 

  5. Curie, P. & Laborde, A. C. r. hebd. Séanc. Acad. Sci. Paris 136, 673–675 (1903).

    CAS  Google Scholar 

  6. Ellis, C. D. & Wooster, A. Proc. R. Soc. A117, 109–123 (1927).

    Article  ADS  CAS  Google Scholar 

  7. Cannon, C. V. & Jenks, G. H. Rev. Sci. Instrum. 21, 236–240 (1950).

    Article  ADS  CAS  Google Scholar 

  8. Simon, S. Nature 135, 763 (1935).

    Article  ADS  CAS  Google Scholar 

  9. Dalmazzone, J. Rapport CEA-R-4858 (France), 1–39 (1977).

  10. Moseley, S. H., Mather, J. C. & McCammon, D. J. appl. Phys. 56(5), 1257–1262 (1984).

    Article  ADS  CAS  Google Scholar 

  11. McCammon, D., Moseley, S. H., Mather, J. C. & Mushotzky, R. F. J. appl. Phys. 56(5), 1263–1266 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Fiorini, E. & Niinikoski, T. Nucl. Instrum. Meth. 224, 83–88 (1984).

    Article  CAS  Google Scholar 

  13. Low, P. J. J. opt. Soc. Am. 51, 1300–1304 (1961).

    Article  ADS  CAS  Google Scholar 

  14. Coron, N., Dambier, G. & Leblanc, J. in Infrared Detector Techniques for Space Research (eds Manno, V. & Ring, J.) 121–131 (Reidel, Dordrecht, 1972).

    Book  Google Scholar 

  15. Clegg, P. E., Ade, P. A. R. & Rowan-Robinson, M. Nature 249, 530–532 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Roellig, T. P. L. & Houck, J. R. Int. J. Infrared mm Waves 4, 299–309 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Lauge, A. E., Kreysa, E., McBride, S. E. & Richards, P. L. Int. J. Infrared mm waves 4, 689–706 (1983).

    Article  ADS  Google Scholar 

  18. Mather, J. C. Appl. Optics 23, 584–588 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Bassi, D., Dondi, M. G., Tommasini, F., Torello, F. & Valbusa, U. Phys. Rev. A13, 584–594 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Gough, T. E., Miller, R. E. & Scoles, G. Appl. Phys. Lett. 30, 338–340 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Houck, J. R. & Briotta, D. A. Jr Infrared Phys. 22, 215–219 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Dambier, G., Leblanc, J., Moalic, J. P., Coron, N. & Liuant, J. French Patent No. 2.410.211 (77 36217) (Nov. 1977).

  23. Stefanovitch, D. Rev. Sci. Instrum. 47, 239–240 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coron, N., Dambier, G., Focker, G. et al. A composite bolometer as a charged-particle spectrometer. Nature 314, 75–76 (1985). https://doi.org/10.1038/314075a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314075a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing