Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New estimates of asymmetric decomposition of racemic mixtures by natural β-radiation sources

Abstract

The Vester–Ulbricht hypothesis suggests that the chirality of biological molecules originates from the β-radiolysis of prebiotic racemic mixtures1. Despite the inconclusiveness of past investigations2–4, recent calculations5,6 have shown that β particles, because of their helicity, radiolyse L- and D-enantiomers at slightly different rates, the asymmetry, AR, being predicted to be 10−11 (new experimental tests7,8 give |AR|<2×10−9). Before this, the size of the radiolysis-induced chiral polarization, ηR (η ≡ (nLnD)/(nL + nD) where nL and nD are the numbers of L and D molecules present), was estimated9–12 for different values of AR; according to Keszthelyi et al.9–11, if |AR|10−11R| can never exceed the chiral polarization, |ηF|, produced by statistical fluctuations, thus invalidating the V–U hypothesis. Here we re-examine the major assumptions on which these calculations were based and find that several overly restrictive conditions were imposed, which, when relaxed, allow the condition |ηR|>|ηF|, in accordance with the V–U hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vester, F., Ulbricht, T. L. V. & Krauss, H. Naturwissenschaften 46, 68–69 (1959).

    Article  ADS  CAS  Google Scholar 

  2. Mason, S. F. Nature 311, 19–23 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Ulbricht, T. L. V. & Vester, F. Tetrahedron 18, 629–637 (1962).

    Article  CAS  Google Scholar 

  4. Garay, A. S. Nature 219, 338–340 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Hegstrom, R. A. Nature 297, 643–647 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Zel'dovich, Ya. B. & Saakyan, D. B. Sov. Phys. JETP 51, 1118–1120 (1980).

    ADS  Google Scholar 

  7. Van House, J., Rich, A. & Zitzewitz, P. W. Origins of Life 14, 413–420 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Gidley, D. W., Rich, A., Van House, J. & Zitzewitz, P. W. Nature 297, 639–643 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Keszthelyi, L. Origins of Life 7, 349–354 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Fajszi, Cs. & Czege, J. Origins of Life 8, 277–281 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Czege, J., Fajszi, Cs. & Keszthelyi, L. Origins of Life, Proc. 2nd ISSOL Meet. 5th ICOL Meet. 333–378 (Center for Academic Publications, Japan Scientific Societies, Tokyo, 1978).

  12. Mann, A. K. & Primakoff, H. Origins of Life 11, 255–265 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Keszthelyi, L. Origins of Life 11, 9–21, 191–194 (1981); 14, 375–382 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Hochstim, A. R. Origins of Life 6, 317–366 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Fajszi, Cs. & Czege, J. Origins of Life 11, 143–162 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Kondepudi, D. K. & Nelson, G. W. Phys. Rev. Lett, 50, 1023–1026 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Mann, A. K. & Primakoff, H. Origins of Life 13, 113–118 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Handbook of Chemistry and Physics 52nd edn (1972).

  19. Heinrich, E. W. Mineralogy and Geology of Radioactive Raw Materials (McGraw-Hill New York, 1958).

    Google Scholar 

  20. Hiemstra, S. A. Trans. geol. Soc. S. Afr. 71, 1–68 (1968).

    CAS  Google Scholar 

  21. Kuroda, P. K. Naturwissenschaften 70, 536–539 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Lamarsh, J. R., An Introduction to Nuclear Engineering (Addison-Wesley, Reading, Massachusetts, 1975).

    Google Scholar 

  23. Delsemme, A. H. Origins of Life 14, 51–60 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Clayton, D. D. Astrophys. J. 280, 144–149 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Cameron, A. G. W. & Truran, J. W. Icarus 30, 447–461 (1967).

    Article  ADS  Google Scholar 

  26. Lee, T., Papanastassion, D. A. & Wasserburg, G. J. Geophys. Res. Lett. 3, 109–112 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Williams, K. M. & Smith, G. G. Origins of Life 8, 91–144 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Miller, S. L. & Orgel, L. E. The Origins of Life on the Earth (Prentice-Hall, New Jersey, 1974).

    Google Scholar 

  29. Hegstrom, R. A. Origins of Life 14, 405–411 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegstrom, R., Rich, A. & Van House, J. New estimates of asymmetric decomposition of racemic mixtures by natural β-radiation sources. Nature 313, 391–392 (1985). https://doi.org/10.1038/313391a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313391a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing