Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of benthic mixing on the information content of deep-sea stratigraphical signals

Abstract

Benthic mixing or bioturbation affects sediments in various ways, including: (1) the production of trace fossils, (2) mechanical and/or chemical alteration of the sediment, and (3) filtering or smearing stratigraphical signals1. Because mixing alters both the slopes and amplitudes of any recorded events, some knowledge of the process is essential for the correct interpretation of the signals. In view of recent trends towards high-resolution stratigraphy2,3 and signal unmixing4–6, the frequency characteristics of the benthic mixing filter must be understood to determine which types of signals can be detected after mixing. Analyses of ash and tektite profiles in deep-sea cores from various geographical regions indicate that even signals from cores having sedimentation rates as high as 7 cm kyr−1 will show severe attenuation of frequencies higher than 0.35 cycles kyr−1 (periods shorter than 2.9 kyr) resulting in loss of ability to resolve closely-spaced events. Most signals will experience much more serious high-frequency attenuation, however. The severity of high frequency loss is directly related to sedimentation rate (R = 0.97 for the cores examined), suggesting that this is the most important variable to take into account when considering a core for palaeoceanographic or palaeoclimatic study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanor, J. S. & Marshall, N. F. in Trace Fossils (ed. Perkins, B. F.) 127–135 (SEPM, Tulsa, 1971).

    Google Scholar 

  2. Berger, W. H., Killingley, J. S. & Vincent, E. Oceanol. Acta 1, 203–216 (1978).

    CAS  Google Scholar 

  3. Kennett, J. P. & Shackleton, N. J. Science 188, 147–150 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Berger, W. H., Johnson, R. F. & Killingley, J. S. Nature 269, 661–663 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Berger, W. H. Deep-Sea Res. 25, 473–480 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Jones, G. A. & Ruddiman, W. F. Quat. Res. 17, 148–172 (1982).

    Article  CAS  Google Scholar 

  7. Goldberg, E. D. & Koide, M. Geochim. cosmochim. Acta 26, 417–450 (1962).

    Article  ADS  CAS  Google Scholar 

  8. Berger, W. H. & Heath, G. R. J. mar. Res. 26, 134–143 (1968).

    Google Scholar 

  9. Guinasso, N. L. & Schink, D. R. J. geophys. Res. 80, 3032–3042 (1975).

    Article  ADS  Google Scholar 

  10. Somayajulu, B. L. K., Sharma, P. & Berger, W. H. Mar. Geol. 54, 169–180 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Graupe, D. Identification of Systems (Van Nostrand Reinhold, New York, 1972).

    MATH  Google Scholar 

  12. Peled, A. & Liu, B. Digital Signal Processing (Wiley, New York. 1976).

    Google Scholar 

  13. Glass, B. P. Earth planet. Sci. Lett. 6, 409–415 (1969).

    Article  ADS  Google Scholar 

  14. Glass, B. P., Baker, R. N., Storzer, D. & Wagner, G. A. Earth planet. Sci. Lett. 19, 184–192 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Ruddiman, W. F. & Glover, L. K. Bull. geol. Soc. Am. 83, 2817–2836 (1972).

    Article  Google Scholar 

  16. Ruddiman, W. F. et al. Sedim. Geol. 25, 257–276 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Ruddiman, W. F. & McIntyre, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  CAS  Google Scholar 

  18. Officer, C. B. & Lynch, D. R. Mar. Geol. 52, 59–74 (1983).

    Article  ADS  Google Scholar 

  19. Otnes, R. K. & Enochson, L. Digital Time Series Analysis (Wiley-Interscience, New York, 1972).

    MATH  Google Scholar 

  20. Schiffelbein, P. & Hills, S. Palaeogeogr. Palaeoclimatol. Palaeoecol. (in press).

  21. Goreau, T. J. Nature 287, 620–622 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Berger, W. H. & Killingley, J. S. Mar. Geol. 45, 93–125 (1982).

    Article  ADS  CAS  Google Scholar 

  23. DeMaster, D. J. & Cochran, J. K. Earth planet. Sci. Lett. 61, 257–271 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Emiliani, C. J. Geol. 538–578 (1955).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffelbein, P. Effect of benthic mixing on the information content of deep-sea stratigraphical signals. Nature 311, 651–653 (1984). https://doi.org/10.1038/311651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing