Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Higher plant tubulin identified by self-assembly into microtubules in vitro

Abstract

Microtubules are filamentous, subcellular structures present in virtually all eukaryotes. In higher plants, microtubules form the mitotic spindle1, determine the plane of cell division2,3 and orient cellulose microfibril deposition in growing cells4,5, and thus are significant determinants of morphogenesis6,7. The main structural component of microtubules is tubulin, a conserved, heterodimeric protein having a molecular weight of 110,000 and composed of α- and β-subunits (55,000 each)8. The resistance of plant microtubules to several antimitotic drugs has suggested that plant tubulins differ from animal tubulins (see refs 5, 9, 10 for review), but further characterization has awaited the development of a method to isolate plant tubulin. As tubulin has no characteristic enzymatic activity, the positive identification of this protein depends on its ability to self-assemble in vitro to form structures which have the morphological features of microtubules. Recent studies11–17 have used indirect methods to isolate tubulin-like proteins from higher plant cell extracts, but none has conclusively identified tubulin by demonstrating its self-assembly into microtubules. We report here the isolation of tubulin from cultured cells of a higher plant and its unequivocal identification by self-assembly into microtubules in vitro. Furthermore, we report peptide mapping data which indicate that although the β-summits of mammalian and higher plant tubulins have been conserved, the α-subunits have diverged during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicklas, R. B. in Molecules and Cell Movement (Raven, New York, 1975).

    Google Scholar 

  2. Pickett-Heaps, J. D. & Northcote, D. H. J. Cell Sci. 1, 109–120 (1966).

    CAS  PubMed  Google Scholar 

  3. Hepler, P. K. & Newcomb, E. H. J. ultrastruct. Res. 19, 498–513 (1967).

    Article  CAS  Google Scholar 

  4. Hepler, P. K. & Fosket, D. E. Protoplasma 72, 213–236 (1971).

    Article  Google Scholar 

  5. Hepler, P. K. & Palevitz, B. A. A. Rev. Pl. Physiol. 25, 309–362 (1974).

    Article  CAS  Google Scholar 

  6. Gunning, B. E. S. & Hardham, A. R. Endeavour (Oxf.) 3, 112–117 (1979).

    Article  Google Scholar 

  7. Hepler, P. K. in Cytomorphogenesis in Plants (ed. Kiermayer, O.) (Springer, New York, 1981).

    Google Scholar 

  8. Kirchner, M. W. Int. Rev. Cytol. 54, 1–71 (1978).

    Article  Google Scholar 

  9. Kihlman, B. A. in Actions of Chemicals on Dividing Cells (Prentice-Hall, Englewood Cliffs, 1966).

    Google Scholar 

  10. Dustin, P. in Microtubules (Springer, Berlin, 1978).

    Book  Google Scholar 

  11. Hart, J. W. & Sabnis, D. D. Planta (Berl.) 109, 147–152 (1973).

    Article  CAS  Google Scholar 

  12. Hart, J. W. & Sabnis, D. D. J. exp. Bot. 27, 1353–1360 (1976).

    Article  CAS  Google Scholar 

  13. Rubin, R. W. & Cousins, E. H. Phytochemistry 15, 1837–1839 (1976).

    Article  CAS  Google Scholar 

  14. Slabas, A. R., MacDonald, G. & Lloyd, C. W. FEBS Lett. 110, 77–79 (1980).

    Article  CAS  Google Scholar 

  15. Yadav, N. S. thesis, Michigan State Univ. (1980).

  16. Mizuno, K., Koyama, M. & Shibaoka, H. J. Biochem. 89, 329–332 (1981).

    Article  CAS  Google Scholar 

  17. Fosket, D. E., Morejohn, L. C. & Westerling, K. E. in Metabolism and Molecular Activities of Cytokinins (eds Guern, J. & Péaud-Lenoël, C.) 193–211 (Springer, Berlin, 1981).

    Book  Google Scholar 

  18. Nash, D. T. & Davies, M. E. J. exp. Bot. 23, 75–91 (1972).

    Article  CAS  Google Scholar 

  19. Davies, M. E. Planta (Berl.) 104, 50–65 (1972).

    Article  CAS  Google Scholar 

  20. Bryan, J., Nagle, B. W. & Doenges, K. H. Proc. natn. Acad. Sci. U.S.A. 72, 3570–3574 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Murphy, D. B. & Borisy, G. G. Proc. natn. Acad. Sci. U.S.A. 72, 2696–2700 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Nickell, L. G. & Tulecke, W. Bot. Gaz. 120, 245–250 (1959).

    Article  CAS  Google Scholar 

  23. Nesius, K. K., Uchytil, L. E. & Fletcher, J. S. Planta (Berl.) 106, 173–176 (1972).

    Article  CAS  Google Scholar 

  24. Weisenberg, R. C., Borisy, G. G. & Taylor, E. W. Biochemistry 1, 4466–4479 (1968).

    Article  Google Scholar 

  25. Studier, F. W. J. molec. Biol. 79, 237–248 (1973).

    Article  CAS  Google Scholar 

  26. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  27. Lee, J. C. & Timasheff, S. N. Biochemistry 14, 5183–5187 (1975).

    Article  CAS  Google Scholar 

  28. Schiff, P. B., Fant, J. & Horwitz, S. B. Nature 277, 665–667 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Ludueña, R. F., Myles, D. G. & Pfeffer, T. A. Expl Cell Res. 130, 455–459 (1980).

    Article  Google Scholar 

  30. Little, M., Ludueña, R. F., Langford, G. M., Asnes, C. F. & Farrell, K. J. molec. Biol. 149, 95–107 (1981).

    Article  CAS  Google Scholar 

  31. Schiff, P. B. & Horwitz, S. B. Biochemistry 20, 3247–3252 (1981).

    Article  CAS  Google Scholar 

  32. Parness, J. & Horwitz, S. B. J. Cell Biol. 91, 479–487 (1981).

    Article  CAS  Google Scholar 

  33. Sloboda, R. D., Dentler, W. L. & Rosenbaum, J. L. Biochemistry 15, 4497–4505 (1976).

    Article  CAS  Google Scholar 

  34. Clayton, L., Quinlan, R. A., Roobol, A., Pogson, C. I. & Gull, K. FEBS Lett. 115, 301–305 (1980).

    Article  CAS  Google Scholar 

  35. Kilmartin, J. V. Biochemistry 20, 3629–3633 (1981).

    Article  CAS  Google Scholar 

  36. Roobol, A., Pogson, C. I. & Gull, K. Expl Cell Res. 130, 203–215 (1980).

    Article  CAS  Google Scholar 

  37. Quinlan, R. A., Roobol, A., Pogson, C. I. & Gull, K. J. gen. Microbiol. 122, 1–6 (1981).

    CAS  PubMed  Google Scholar 

  38. Cleveland, D. W., Fischer, S. G., Kirchner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  PubMed  Google Scholar 

  39. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morejohn, L., Fosket, D. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature 297, 426–428 (1982). https://doi.org/10.1038/297426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing