Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A symmetrically pulsed jet of gas from an invisible protostar in Orion

Abstract

Young stars are thought to accumulate most of their mass through an accretion disk, which channels the gas and dust of a collapsing cloud onto the central protostellar object1. The rotational and magnetic forces in the star–disk system often produce high-velocity jets of outflowing gas2,3,4,5,6. These jets can in principle be used to study the accretion and ejection history of the system, which is hidden from direct view by the dust and dense gas of the parent cloud. But the structures of these jets are often too complex to determine which features arise at the source and which are the result of subsequent interactions with the surrounding gas. Here we present infrared observations of a very young jet driven by an invisible protostar in the vicinity of the Horsehead nebula in Orion. These observations reveal a sequence of geyser-like eruptions occurring at quasi-regular intervals and with near-perfect mirror symmetry either side of the source. This symmetry is strong evidence that such features must be associated with the formation of the jet, probably related to recurrent or even chaotic instabilities in the accretion disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular hydrogen images of HH212.
Figure 2: Infrared spectroscopy of HH212.

Similar content being viewed by others

References

  1. Beckwith, S. V. W. & Sargent, A. I. Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139–144 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Camenzind, M. in Herbig-Haro Flows and the Birth of Low Mass Stars(eds Reipurth, B. & Bertout, C.) 241–258 (Proc. IAU Symp. 182, Kluwer, Dordrecht, (1997)).

    Book  Google Scholar 

  3. Shu, F. H. & Shang, H. in Herbig-Haro Flows and the Birth of Low Mass Stars(eds Reipurth, B. & Bertout, C.) 225–239 (Proc. IAU Symp. 182, Kluwer, Dordrecht, (1997)).

    Book  Google Scholar 

  4. Ouyed, R., Pudritz, R. E. & Stone, J. M. Episodic jets from black holes and protostars. Nature 385, 409–414 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Edwards, S., Ray, T. & Mundt, R. in Protostars and Planets III(eds Levy, E. H. & Lunine, J. L.) 567–602 (Univ. Arizona Press, Tucson, (1993)).

    Google Scholar 

  6. Bachiller, R. Bipolar molecular outflows from young stars and protostars. Annu. Rev. Astron. Astrophys. 34, 111–154 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Wouterloot, J. G. A. & Walmsley, C. M. H2O masers associated with IRAS sources in regions of star formation. Astron. Astrophys. 168, 237–247 (1986).

    ADS  CAS  Google Scholar 

  8. Zinnecker, H., Bastien, P., Arcoragi, J.-P. & Yorke, H. W. Submillimeter dust continuum observations of three low luminosity protostellar IRAS sources. Astron. Astrophys. 265, 726–732 (1992).

    ADS  CAS  Google Scholar 

  9. Chini, R. et al. Cold dust around Herbig-Haro energy sources: morphology and new protostellar candidates. Astron. Astrophys. 32/b>, 542–550 (1997).

    ADS  Google Scholar 

  10. Wouterloot, J. G. A., Henkel, C. & Walmsley, C. M. CO observations of IRAS sources in Orion and Cepheus. Astron. Astrophys. 215, 131–146 (1989).

    ADS  CAS  Google Scholar 

  11. Claussen, M. J., Marvel, K. B., Wootten, H. A. & Wilking, B. A. in Herbig-Haro Flows and the Birth of Low Mass Stars(eds Reipurth, B. & Bertout, C.) 515–524 (Proc. IAU Symp. 182, Kluwer, Dordrecht, (1997)).

    Book  Google Scholar 

  12. Zinnecker, H. in Low-mass Star Formation and Pre-main Sequence Objects(ed. Reipurth, B.) 447–469 (Proc. ESO Workshop, European Southern Observatory, Garching, (1989)).

    Google Scholar 

  13. Reipurth, B. Ageneral catalog of Herbig-Haro objects. Available by anonymous ftp, directory pub/Catalogs/Herbig-Haro from 〈ftp.eso.org〉((1994)).

  14. McCaughrean, M. J., Rayner, J. T. & Zinnecker, H. Discovery of a molecular hydrogen jet near IC348. Astrophys. J. 436, L189–L192 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Rodríguez, L. F. & Reipurth, B. VLA detection of the exciting sources of HH24, HH114, and HH199. Rev. Mex. Astron. Astrofis. 32, 27–33 (1996).

    ADS  Google Scholar 

  16. Hirth, G., Mundt, R., Solf, J. & Ray, T. P. Asymmetries in bipolar jets from young stars. Astrophys. J. 427, L99–L102 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Fendt, C. & Camenzind, M. On collimated stellar jet magnetospheres. II. Dynamical structure of collimating wind flows. Astron. Astrophys. 313, 591–604 (1996).

    ADS  Google Scholar 

  18. Burrows, C. J. et al. Hubble Space Telescope observations of the disk and jet of HH30. Astrophys. J. 473, 437–451 (1996).

    Article  ADS  Google Scholar 

  19. Heathcote, S. et al. Hubble Space Telescope observations of the HH47 jet: narrowband images. Astron. J. 112, 1141–1168 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Reipurth, B. The HH111 jet and multiple outflow episodes from young stars. Nature 340, 42–45 (1989).

    Article  ADS  Google Scholar 

  21. Gredel, R. & Reipurth, B. An infrared counter-flow in the HH111 jet complex. Astron. Astrophys. 289, L19–L22 (1994).

    ADS  CAS  Google Scholar 

  22. Bell, K. R. & Lin, D. N. C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. Astrophys. J. 427, 987–1004 (1994).

    Article  ADS  Google Scholar 

  23. Balbus, S. A. & Hawley, J. F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–54 (1998).

    Article  ADS  Google Scholar 

  24. Stone, J. M. & Norman, M. L. Numerical simulations of protostellar jets with nonequilibrium cooling. II. Models of pulsed jets. Astrophys. J. 413, 210–220 (1993).

    Article  ADS  Google Scholar 

  25. Raga, A. C. & Kofman, L. Knots in stellar jets from time-dependent sources. Astrophys. J. 386, 222–228 (1992).

    Article  ADS  Google Scholar 

  26. Suttner, G., Smith, M. D., Yorke, H. W. & Zinnecker, H. Multi-dimensional numerical simulations of molecular jets. Astron. Astrophys. 318, 595–607 (1997).

    ADS  Google Scholar 

  27. Reipurth, B., Bally, J. & Devine, D. Giant Herbig-Haro flows. Astron. J. 114, 2708–2735 (1997).

    Article  ADS  CAS  Google Scholar 

  28. van der Klis, M. Quasi-periodic oscillations and noise in low-mass X-ray binaries. Annu. Rev. Astron. Astrophys. 27, 517–553 (1989).

    Article  ADS  Google Scholar 

  29. McHardy, I. & Czerny, B. Fractal X-ray time variability and spectral invariance of the Seyfert galaxy NGC5506. Nature 325, 696–698 (1987).

    Article  ADS  Google Scholar 

  30. Smith, M. D. & Brand, P. W. J. L. H2profiles of C-type bow shocks. Mon. Not. R. Astron. Soc. 245, 108–118 (1990).

    ADS  CAS  Google Scholar 

  31. Smith, M. D., Brand, P. W. J. L. & Moorhouse, A. Shock absorbers in bipolar outflows. Mon. Not. R. Astron. Soc. 248, 730–740 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Ray, T. P. et al. Large-scale magnetic fields in the outflow from the young stellar object T Taui S. Nature 385, 415–417 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Mirabel, I. F. & Rodríguez, L. F. Asuperluminal source in the galaxy. Nature 371, 46–48 (1994).

    Article  ADS  Google Scholar 

  34. Zensus, J. A. Parsec-scale jets in extragalactic radio sources. Annu. Rev. Astron. Astrophys. 35, 605–636 (1997).

    Article  ADS  Google Scholar 

  35. Herbst, T. M. et al. in Infrared Detectors and Instrumentation(ed. Fowler, A. M.) Proc. SPIE 1946, 605–609 (1993).

    Book  Google Scholar 

  36. Smith, M. D. Predictions for JHK photometry of molecular shocks. Astron. Astrophys. 296, 789–796 (1995).

    ADS  Google Scholar 

  37. Hodapp, K.-W., Hora, J. L., Erwin, E. & Young, T. KSPEC—a near infrared cross-dispersed spectrograph. Publ. Astron. Soc. Pacif. 106, 87–93 (1994).

    Article  ADS  Google Scholar 

  38. Smith, M. D., Davis, C. J. & Lioure, A. The ortho and para fractions of molecular hydrogen in protostellar outflows and Herbig-Haro objects. Astron. Astrophys. 327, 1206–1214 (1997).

    ADS  CAS  Google Scholar 

  39. Herbst, T. M. et al. Anear-infrared spectral imaging study of T Tau. Astron. J. 111, 2403–2414 (1996).

    Article  ADS  CAS  Google Scholar 

  40. Greene, T. P., Tokunaga, A. T., Toomey, D. W. & Carr, J. S. in Infrared Detectors and Instrumentation(ed. Fowler, A. M.) Proc. SPIE 1946, 313–324 (1993).

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Balbus, J. Bally, R. Blandford, W. Brandner, M. Camenzind, W. Dent, C.Fendt, R. Gredel, G. Hasinger, L. Kofman, R. Mundt, M. Norman, M. Rees, B. Reipurth, M. Smith, F.Shu, J. Stone, C. Terquem, M. Walmsley and H. Yorke for discussions on the theory and observations of astrophysical jets. We also thank C. Ishida for reducing the KSPEC data. H.Z. and M.J.M. were visiting astronomers at the NASA IRTF using the facility camera NSFCAM, with which HH212 was originally discovered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zinnecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinnecker, H., McCaughrean, M. & Rayner, J. A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394, 862–865 (1998). https://doi.org/10.1038/29716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29716

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing