Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional matches from one-dimensional stimulus components in human stereopsis

Abstract

Three-dimensional visual scenes project onto the retina of the eye as two-dimensional images. The third dimension, depth, is projected as subtle differences between left and right retinal images. As early as the 1830s, stereoscopic depth perception was shown to depend on horizontal disparities between these images1. To detect disparity, the visual system must match corresponding parts of the two retinal images. To identify the stimulus elements used in stereo matching, I applied a disparity-adaptation technique to visual patterns whose one-dimensional components and two-dimensional features have very different disparities. Surprisingly, the adaptors that are effective in altering depth perception appear widely separated in depth from the patterns they adapt. I conclude that stereo matching occurs in all directions of two-dimensional space and that one-dimensional components are the stimulus primitives, the fundamental elements of stereo matching. This is a reversal of the classical viewof stereo correspondence as a one-dimensional (horizontal) matching of monocular two-dimensional features2,3,4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereograms.
Figure 2: Perceived depth polarity of stereo plaids as a function of disparity of one component grating; the other component had zero disparity.
Figure 3: One- and two-stage models of stereo matching.
Figure 4: Adaptation experiment.
Figure 5: Depth discrimination performance.

Similar content being viewed by others

References

  1. Wheatstone, C. Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision Phil. Trans. R. Soc. Lond. B 2, 371–393 (1838).

    ADS  Google Scholar 

  2. Ogle, K. N. Researches in Binocular Vision (Saunders, Philadelphia, (1950)).

    Google Scholar 

  3. Bishop, P. O. Neurosciences Research Study Program Boulder Symposium (ed. Schmitt, F. O.) (Rockefeller Univ. Press, New York, (1970)).

    Google Scholar 

  4. Julesz, B. Foundations of Cyclopean Perception (Univ. of Chicago Press, (1971)).

    Google Scholar 

  5. Wallach, H. On Perception (ed. Wallach, H.) (Quadrangle, New York, (1976)).

    Google Scholar 

  6. Farell, B. & Ahuja, S. Binocular disparity of 1- and 2-D contours Invest. Ophthalmol. Vis. Sci. (suppl.) 37, 284 (1996).

    Google Scholar 

  7. Farell, B. Depth coherence and depth reversal in stereo plaids Invest. Ophthalmol. Vis. Sci. (suppl.) 38, 904 (1997).

    Google Scholar 

  8. Ramachandran, V. S. & Cavanagh, P. Subjective contours capture stereopsis. Nature 317, 527–531 (1985).

    Article  ADS  Google Scholar 

  9. Schumer, R. A. & Ganz, L. Disparity averaging in random dot stereopsis J. Opt. Soc. Am. 69, 1479 (1979).

    ADS  Google Scholar 

  10. Stevenson, S. B. & Schor, C. M. Human stereo matching is not restricted to epipolar lines Vision Res. 37, 2717–2723 (1997).

    Article  CAS  Google Scholar 

  11. Morgan, M. J. & Castet, E. The aperture problem in stereopsis Vision Res. 39, 2737–2744 (1997).

    Article  Google Scholar 

  12. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  13. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature 352, 156–159 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Blakemore, C. & Hague, B. Evidence for disparity detecting neurons in the human visual system J.Physiol. (Lond.) 225, 437–455 (1972).

    Article  CAS  Google Scholar 

  15. Hibbard, P. B. & Langley, K. Plaid slant and inclination thresholds can be predicted from components Vision Res. 38, 1073–1084 (1998).

    Article  CAS  Google Scholar 

  16. von Helmholtz, H. Treatise on Physiological OpticsVol. 3 (ed. Southall, J. P. C.) (translated from German 3rd edn) (Optical Society of America, (1925)).

    MATH  Google Scholar 

  17. Gillam, B., Chambers, D. & Lawergren, B. The role of vertical disparity in the scaling of stereoscopic depth perception: an empirical and theoretical study Percept. Psychophys. 44, 473–483 (1988).

    Article  CAS  Google Scholar 

  18. Rogers, B. J. & Bradshaw, M. F. Vertical disparities, differential perspective and binocular stereopsis. Nature 361, 253–255 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  20. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination J. Physiol. (Lond.) 193, 327–342 (1967).

    Article  CAS  Google Scholar 

  21. Poggio, G. F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  Google Scholar 

  22. Zeki, S. Functional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex Proc. R. Soc. Lond. B 204, 379–397 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Ferster, D. Acomparison of binocular depth mechanisms in area 17 and 18 of the cat visual cortex J.Physiol. (Lond.) 311, 623–655 (1981).

    Article  CAS  Google Scholar 

  24. LeVay, S. & Voigt, T. Ocular dominance and disparity coding in cat visual cortex Vis. Neurosci. 1, 395–414 (1988).

    Article  CAS  Google Scholar 

  25. Nikara, T., Bishop, P. O. & Pettigrew, J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex Exp. Brain Res. 5, 353–372 (1968).

    Google Scholar 

  26. Anzai, A., Ohzawa, I. & Freeman, R. D. Neural mechanisms underlying binocular fusion and stereopsis: Position vs. phase Proc. Natl Acad. Sci. USA 94, 5438–5443 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Mayhew, J. E. W. & Frisby, J. P. Stereopsis masking in humans is not orientationally tuned Perception 7, 431–436 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank D. C. Moore for laboratory assistance, and S. Ahuja, R. van Ee, J. Krauskopf, D. Matza, D. G. Pelli and S. B. Stevenson for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Farell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farell, B. Two-dimensional matches from one-dimensional stimulus components in human stereopsis. Nature 395, 689–693 (1998). https://doi.org/10.1038/27192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27192

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing