Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The atomic structure of the bluetongue virus core

Abstract

The structure of the core particle of bluetongue virus has been determined by X-ray crystallography at a resolution approaching 3.5 Å. This transcriptionally active compartment, 700 Å in diameter, represents the largest molecular structure determined in such detail. The atomic structure indicates how approximately 1,000 protein components self-assemble, using both the classical mechanism of quasi-equivalent contacts, which are achieved through triangulation, and a different method, which we term geometrical quasi-equivalence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Essential features of the architecture of the BTV core.
Figure 2: The VP3(T2) molecule.
Figure 3: Geometrical quasi-equivalence in the VP3(T2) layer.
Figure 4: Contacts in the VP3(T2) layer.
Figure 5: The VP7(T13) layer.

References

  1. Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness virus. Arch. Virol. 13(suppl.) (in the press).

  2. Holmes, I. H. et al. in Virus Taxonomy: Classification and Nomenclature of Viruses (eds Murphy, F. A. etal.) 208–237 (Springer, Wien and New York, (1998)).

    Google Scholar 

  3. Mertens, P. P. C. et al. Enhanced infectivity of modified bluetongue virus particles for two insect cell lines and for two Culicoides vector species. Virology 217, 582–593 (1996).

    Article  CAS  Google Scholar 

  4. Furuichi, Y., Muthukrishnan, S., Tomasz, J. & Shatkin, A. J. Mechanism of formation of reovirus mRNA 5′-terminal blocked and methylated sequence, m7GpppGmpC. J. Biol. Chem. 251, 5043–5053 (1976).

    CAS  Google Scholar 

  5. Mertens, P. P. C., Burroughs, J. N. & Anderson, J. Purification and properties of virus particles, infectious subviral particles, and cores of bluetongue virus serotypes 1 and 4. Virology 157, 375–386 (1987).

    Article  CAS  Google Scholar 

  6. Hewat, E. A., Booth, T. F., Loudon, P. T. & Roy, P. Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology 189, 10–20 (1992).

    Article  CAS  Google Scholar 

  7. Juuti, J. T., Ravantti, J. J. & Bamford, D. H. in 6th International Symposium on dsRNA Viruses (eds Arias, C. F. & Lopez, S.) A1–A10 (Cocoyoc, Mexico, (1997)).

    Google Scholar 

  8. Prasad, B. V. V., Yamaguchi, S. & Roy, P. Three-dimensional structure of single-shelled bluetongue virus. J. Virol. 66, 2135–2142 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Grimes, J. M. et al. An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5, 885–893 (1997).

    Article  CAS  Google Scholar 

  10. Caspar, D. L. D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  11. Huismans, H., van Dijk, A. A. & Els, H. J. Uncoating of parental bluetongue virus to core and subcore particles in infected L cells. Virology 157, 180–188 (1987).

    Article  CAS  Google Scholar 

  12. Loudon, P. T. & Roy, P. Assembly of five bluetongue virus proteins expressed by recombinant baculoviruses: inclusion of the largest protein VP1 in the core and virus-like particles. Virology 180, 798–802 (1991).

    Article  CAS  Google Scholar 

  13. Burroughs, J. N., Grimes, J. M., Mertens, P. P. C. & Stuart, D. I. Crystallization and preliminary X-ray analysis of the core particle of bluetongue virus. Virology 210, 217–220 (1995).

    Article  CAS  Google Scholar 

  14. Burroughs, J. N. et al. Purification and properties of virus particles, infectious subviral particles, cores and VP7 crystals of African horsesickness virus serotype 9. J. Gen. Virol. 75, 1849–1857 (1994).

    Article  CAS  Google Scholar 

  15. Moss, S. R. & Nuttall, P. A. Subcore- and core-like particles of Broadhaven virus (BRDV), a tick-bourne orbivirus, synthesized from baculovirus expressed VP2 and VP7, the major core proteins of BRDV. Virus Res. 32, 401–407 (1994).

    Article  CAS  Google Scholar 

  16. Fu, H., Bland, A. P., Wade-Evans, A. M., Mertens, P. P. C. & Mellor, P. S. Ultrastructural comparison of bluetongue virus replication in mammalian and Culicoides cells. J. Gen. Virol. (in the press).

  17. Liddington, R. C. et al. Structure of simian virus 40 at 3.8-Å resolution. Nature 354, 278–284 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Johnson, J. E. & Speir, J. A. Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).

    Article  CAS  Google Scholar 

  19. Grimes, J. M., Basak, A. K., Roy, P. & Stuart, D. I. The crystal structure of bluetongue virus VP7. Nature 373, 167–170 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Holm, L. & Sander, C. The FSSP database: fold classification based on structure-structure alignment of proteins. Nucleic Acids Res. 24, 206–209 (1996).

    Article  CAS  Google Scholar 

  21. Caston, J. R. et al. Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded rna. J. Cell Biol. 138, 975–985 (1997).

    Article  CAS  Google Scholar 

  22. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  23. Brookes, S. M., Hyatt, A. D. & Eaton, B. T. Characterizes of virus inclusion bodies in bluetongue virus-infected cells. J. Gen. Virol. 74, 525–530 (1993).

    Article  Google Scholar 

  24. Harrison, S. C. Protein interfaces and intersubunit bonding. The case of tomato bushy stunt virus. Biophys. J. 32, 139–153 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Zhu, Y. et al. Details of the arrangement of the outer capsid of Rice Dwarf Phytoreovirus, as visualized by two-dimensional crystallography. J. Virol. 71, 8899–8901 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Blois, H. & Roy, P. Asingle point mutation in the VP7 major core protein of bluetongue virus prevents the formation of core-like particles. J. Virol. 67, 353–359 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Basak, A. K., Grimes, J. M., Gouet, P., Roy, P. & Stuart, D. I. Structures of orbivirus VP7: implications for the role of this protein in the viral life cycle. Structure 5, 871–883 (1997).

    Article  CAS  Google Scholar 

  28. Filman, D. J. et al. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8, 1567–1579 (1989).

    Article  CAS  Google Scholar 

  29. Butcher, S. J., Dokland, T., Ojala, P. M., Bamford, D. H. & Fuller, S. D. Intermediates in the assembly pathway of the double-stranded RNA virus phi6. EMBO J. 16, 4477–4487 (1997).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. O. & Minor, W. in Macromolecular Crystallography (eds Carter, C. W. & Sweet, R. M.) 307–326 (Academic, San Diego, CA, (1997)).

    Book  Google Scholar 

  31. Brunger, A. T. X-PLOR Version 3.1 (Yale Univ. Press, Connecticut, (1992)).

    Google Scholar 

  32. Jones, T. A. in Diffraction Methods for Biological Macromolecules (eds Wyckoff, H. W., Hirs, C. H. W. & Tinasheft, S. N.) 157–171 (Academic, Orlando, Florida, (1985).

    Book  Google Scholar 

  33. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  34. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coluring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  35. Bacon, D. & Anderson, W. F. Afast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

  36. Merritt, E. A. & Murphy, M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  37. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  38. Risler, J. L., Delorme, M. O., Delacroix, H. & Henaut, A. Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. J. Mol. Biol. 204, 1019–1029 (1988).

    Article  CAS  Google Scholar 

  39. Frishman, D. & Argos, P. Knowledge-based secondary structure assignment. Proteins 23, 566–579 (1995).

    Article  CAS  Google Scholar 

  40. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  41. Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the SRS, ESRF and EMBL for their assistance in data collection, in particular the staff of ID2 at the ESRF; the disease security officers D. Goodridge, S. Williams, A. Meyer and P. Wilkinson; M. Pickford for technical assistance; R. Bryan, K. Measures and R. Esnouf for computing; S. Lee for assistance with figures; and P. Roy and E. Y. Jones for discussion. This work has been given long-term support by the BBSRC and MRC; R.M. is supported by a C. J. Martin fellowship from NHMRC Australia; P.P.C.M. and J.N.B. are supported by MAFF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Stuart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, J., Burroughs, J., Gouet, P. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998). https://doi.org/10.1038/26694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26694

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing