Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Removal of ozone from the atmosphere by soil and vegetation

Abstract

OZONE is the principal constituent of the photochemical smog that plagues many cities in the United States. Produced by the action of sunlight on the hydrocarbons and oxides of nitrogen emitted by vehicles and industry, concentrations of ozone greater than 25×1011 molecules cm−3 (1×1011 molecules cm−3 =0.4 parts per hundred million = 8 µg m−3), used as evidence of photochemical smog1, have been observed in Los Angeles for more than two decades2. Because of lower air temperatures, less sunshine and fewer vehicles, photochemical pollution was considered unlikely to occur in Western Europe but concentrations indicative of photochemical smog have now been reported from Germany3, the Netherlands4,5 and southern England6,7 on calm, sunny days. High concentrations of ozone cause respiratory difficulties in humans8 and damage many plants9 including crops10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Air Quality Criteria for Photochemical Oxidants, chapter 3 (US Department of Health, Education and Welfare, Washington, 1970).

  2. Haagen-Smit, A. J., Ind. engng Chem., 44, 1342 (1952).

    Article  CAS  Google Scholar 

  3. Jost, D., Pure appl Chem., 24, 643 (1970).

    Article  CAS  Google Scholar 

  4. Wisse, J. A., and Velds, C. A., Atmos. Environ., 4, 79 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Wisse, J. A., and Velds, C. A., Atmos, Environ., 4, 187 (1971).

    Article  ADS  Google Scholar 

  6. Atkins, D. H. F., Cox, R. A., and Eggleton, A. E. J., Nature, 235, 372 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Derwent, R. G., and Stewart, H. N. M., Nature, 241, 342 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Palm, P. E., and Nick, M. S., in Environmental Biology (edit. by Altman. P. L., and Dittwer, D. S.), 281 (Fedn Am. Soc. exp. Biol. Bethesda, Md. 1966).

    Google Scholar 

  9. Rich, S., A. Rev. Phytopath., 2, 253 (1964).

    Article  CAS  Google Scholar 

  10. Heggestad, H. E., and Heck, W. W., Adv. Agron., 23, 111 (1971).

    Article  CAS  Google Scholar 

  11. Regener, V. H., J. geophys. Res., 62, 221 (1957).

    Article  ADS  CAS  Google Scholar 

  12. Aldaz, L., J. geophys. Res., 74, 6943 (1969).

    Article  ADS  Google Scholar 

  13. Galbally, I., Q. Jl. R. Met. Soc., 97, 18 (1971).

    Article  ADS  Google Scholar 

  14. Turner, N. C., Rich, S., and Waggoner, P. E., J. environ. Quality, 2, 259 (1973).

    Article  CAS  Google Scholar 

  15. Rich, S., Waggoner, P. E., and Tomlinson, H., Science, 169, (1970).

    Article  ADS  CAS  Google Scholar 

  16. Hill, A. C., J. Air Pollut. Control Ass., 21, 341 (1971).

    Article  CAS  Google Scholar 

  17. Thorne, L., and Hanson, G. P., Environ. Pollut., 3, 303 (1972).

    Article  CAS  Google Scholar 

  18. Waggoner, P. E., BioScience, 21, 455 (1971).

    Article  CAS  Google Scholar 

  19. Waggoner, P. E., and Reifsnyder, W. E., J. appl. Met., 7, 400 (1968).

    Article  Google Scholar 

  20. Waggoner, P. E., Furnival, G. M., and Reifsnyder, W. E., Forest Sci., 15, 37 (1969).

    Google Scholar 

  21. Waggoner, P. E., in Physiological Aspects of Crop Yield, (edit. by Eastin, J. D., Haskins, F. A., Sullivan, C. Y., and Van Bavel, C. H. M.), 343 (American Society of Agronomy, Madison, Wis., 1969).

    Google Scholar 

  22. Turner, N. C., and Parlange, J. Y., Pl. Physiol., 46, 175 (1970).

    Article  CAS  Google Scholar 

  23. Waggoner, P. E., Begg, J. E., and Turner, N. C., Agric. Met. 6, 227 (1969).

    Article  Google Scholar 

  24. Waggoner, P. E., and Turner, N. C., Agric. Met., 10, 113 (1972).

    Article  Google Scholar 

  25. Engle, R. L., and Gabelman, W. H., Proc. A. Soc. hort. Sci., 39, 423 (1966).

    Google Scholar 

  26. Rich, S., and Turner, N. C., J. Air Pollut. Control Ass., 22, 718 (1972).

    Article  CAS  Google Scholar 

  27. Turner, N. C., and Begg, J. E., Pl. Physiol., 51, 31 (1973).

    Article  CAS  Google Scholar 

  28. Inman, R. E., Ingersoll, R. B., and Levy, E. A., Science, 172, 1229 (1971).

    Article  ADS  CAS  Google Scholar 

  29. Garland, J. A., Clough, W. S., and Fowler, D., Nature, 242, 256 (1973).

    Article  ADS  Google Scholar 

  30. Crutzen, P., Pure appl. Geophys., 106–108, 1385 (1973).

    Article  Google Scholar 

  31. Leuy, H., Planet. Space Sci., 21, 575 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TURNER, N., WAGGONER, P. & RICH, S. Removal of ozone from the atmosphere by soil and vegetation. Nature 250, 486–489 (1974). https://doi.org/10.1038/250486a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/250486a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing