Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a square flux-line lattice in the unconventional superconductor Sr2RuO4

A Corrigendum to this article was published on 06 April 2000

Abstract

The phenomenon of superconductivity continues to be of considerable scientific and practical interest. Underlying this phenomenon is the formation of electron pairs, which in conventional superconductors do not rotate about their centre of mass (‘s -wave’ pairing; refs 1, 2). This contrasts with the situation in high-temperature superconductors, where the electrons in a pair are believed to have two units of relative angular momentum (‘d -wave’ pairing; ref. 3 and references therein). Here we report small-angle neutron-scattering measurements of magnetic flux lines in the perovskite superconductor Sr2RuO4 (ref. 4), which is a candidate for another unconventional paired electron state—‘p -wave’ pairing, which has one unit of angular momentum5,6,7. We find that the magnetic flux lines form a square lattice over a wide range of fields and temperatures, which is the result predicted by a recent theory8,9 of p -wave superconductivity in Sr2RuO4. This theory also indicates that only a fraction of the electrons are strongly paired and that the orientation of the square flux lattice relative to the crystal lattice will determine which parts of the three-sheet Fermi surface of this material are responsible for superconductivity. Our results suggest that superconductivity resides mainly on the ‘γ’ sheet9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contour plot of FLL diffraction pattern.
Figure 2: Observations in the B–T plane of a square FLL.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Anderson, P. W. & Morel, P. Generalised Bardeen-Cooper-Schrieffer states and the proposed low temperature phase of liquid He3. Phys. Rev. 123, 1911–1934 (1961).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Tsuei, C. C. & Kirtley, J. R. Phase-sensitive tests of pairing symmetry in cuprate superconductors. Physica C 282, 4–11 (1997).

    Article  ADS  Google Scholar 

  4. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Rice, T. M. & Sigrist, M. Sr2RuO4: an electronic analogue of 3He? J. Phys: Condens. Matter 7, L643–648 (1995).

    ADS  CAS  Google Scholar 

  6. Maeno, Y. Electronic states of the superconductor Sr2RuO4. Physica C 282-7, 206–209 (1997).

    Article  ADS  Google Scholar 

  7. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 & (erratum) 3890 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Agterberg, D. F., Rice, T. M. & Sigrist, M. Orbital dependent superconductivity in Sr2RuO4. Phys. Rev. Lett. 78, 3374–3377 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Agterberg, D. F. Vortex lattice structures of Sr2RuO4. Phys. Rev. Lett. 80, 5184–5187 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Mackenzie, A. P. et al. Quantum oscillations in the layered perovskite superconductor Sr2RuO4. Phys. Rev. Lett. 76, 3786–3789 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Maeno, Y. & Yoshida, K. Fermi liquid properties and superconductivity of Sr2RuO4. Czech. J. Phys. 46 Suppl. S6,3097–3104 (1996).

    Article  CAS  Google Scholar 

  12. Maeno, Y. et al. Two-dimensional Fermi liquid behavior of the superconductor Sr2RuO4. J. Phys. Soc. Jpn 66, 1405–1408 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Mackenzie, A. P. et al. Fermi surface topography of Sr2RuO4. J. Phys. Soc. Jpn 67, 385–388 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Aegerter, C. M. et al. Evidence for a square vortex lattice in Sr2RuO4by muon-spin rotation measurements. J. Phys: Condens. Matter 10, 7445–7451 (1998).

    ADS  CAS  Google Scholar 

  15. Hohenberg, P. C. & Werthamer, N. R. Anisotropy and temperature dependence of the upper critical field of type-II superconductors. Phys. Rev. 153, 493–497 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Kogan, V. G. et al. Vortex lattice transitions in borocarbides. Phys. Rev. B 55, 8693–8696 (1997).

    Article  ADS  Google Scholar 

  17. De Wilde, Y. et al. The superconducting energy gap and vortex lattice structure in LuNi2B2C. Physica C 282-7, 355–358 (1997).

    Article  ADS  Google Scholar 

  18. Paul, D. McK. et al. Nonlocal effects and vortex lattice transitions in YNi2B2C. Phys. Rev. Lett. 80, 1517–1520 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Obst, B. Rectangular flux line lattice in type II superconductors. Phys. Lett A 28, 662–663 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Berlinsky, A. J., Fetter, A. L., Franz, M., Kallin, C. & Soininen, P. I. Ginzburg-Landau theory of vortices in d-wave superconductors. Phys. Rev. Lett. 75, 2200–2203 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Brandt, E. H. Precision Ginzburg-Landau solution of ideal vortex lattices for any induction and symmetry. Phys. Rev. Lett. 78, 2208–2211 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Schofield, A. J. Upper critical-field in the gauge-model. Phys. Rev. B 51, 11733–11738 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Mackenzie, A. P. et al. Calculation of thermodynamic and transport-properties of Sr2RuO4at low-temperatures using known Fermi-surface parameters. Physica C 263, 510–515 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Rickayzen, G. in Superconductivity (ed. Parks, R. D.) 91 (Dekker, New York, 1969).

    Google Scholar 

  25. Luke, G. M. et al. Time-reversal symmetry breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Sigrist, M. & Zhitomirsky, M. E. Pairing symmetry of the superconductor Sr2RuO4. J. Phys. Soc. Jpn 65, 3452–3455 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Machida, K., Ozaki, M. & Ohmi, T. Odd-parity pairing superconductivity under tetragonal symmetry—possible application to Sr2RuO4. J. Phys. Soc. Jpn 65, 3720–3723 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Mazin, I. I. & Singh, D. Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4. Phys. Rev. Lett. 79, 733–736 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Maeno, Y., NishiZaki, S., Yoshida, K., Ikeda, S. & Fujita, T. Normal-state and superconducting properties of Sr2RuO4. J. Low. Temp. Phys. 105, 1577–1588 (1996).

    Article  ADS  CAS  Google Scholar 

  31. Yaron, U. et al. Structural evidence for a 2-step process in the depinning of the superconducting flux-line-lattice. Nature 376, 753–755 (1996).

    Article  ADS  Google Scholar 

  32. Chmaissem, O., Jorgensen, J. D., Shaked, H., Ikeda, S. & Maeno, Y. Thermal expansion and compressibility of Sr2RuO4. Phys. Rev. B 57, 5067–5070 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-L. Ragazzoni of the ILL for setting up the dilution refrigerator, D. F. Agterberg for useful discussions, E. H. Brandt for giving us a copy of his program and G. M. Luke for communicating results before publication. One of us (A.P.M.) acknowledges the support of the Royal Society. This work was supported by the UK EPSRC, and CREST of Japan Science and Technology Corporation. The neutron scattering was carried out at the Institut Laue-Langevin, Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Riseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riseman, T., Kealey, P., Forgan, E. et al. Observation of a square flux-line lattice in the unconventional superconductor Sr2RuO4. Nature 396, 242–245 (1998). https://doi.org/10.1038/24335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24335

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing