Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks

Abstract

Surfactants have been shown to organize silica into a variety of mesoporous forms, through the mediation of electrostatic, hydrogen-bonding, covalent and van der Waals interactions1,2,3,4,5,6,7,8. This approach to mesostructured materials has been extended, with sporadic success, to non-silica oxides5,6,7,8,9,10,11,12,13,14,15,16,17, which might promise applications involving electron transfer or magnetic interactions. Here we report a simple and versatile procedure for the synthesis of thermally stable, ordered, large-pore (up to 140 Å) mesoporous metal oxides, including TiO2, ZrO2, Al2O3, Nb2O5, Ta2O5, WO3, HfO2, SnO2, and mixed oxides SiAlO3.5, SiTiO4, ZrTiO4, Al2TiO5 and ZrW2O8. We used amphiphilic poly(alkylene oxide) block copolymers as structure-directing agents in non-aqueous solutions for organizing the network-forming metal-oxide species, for which inorganic salts serve as precursors. Whereas the pore walls of surfactant-templated mesoporous silica1 are amorphous, our mesoporous oxides contain nanocrystalline domains within relatively thick amorphous walls. We believe that these materials are formed through a mechanism that combines block copolymer self-assembly with complexation of the inorganic species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Powder X-ray diffraction patterns for mesoporous ZrO2 (a) and TiO2 (b).
Figure 2: TEM images of mesoporous materials.
Figure 3: Nitrogen adsorption–desorption isotherms and pore-size distribution plots (insets) for calcined TiO2 (a) and calcined WO3 (b).

Similar content being viewed by others

References

  1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Huo, Q. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Huo, Q. et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 6, 1176–1191 (1994).

    Article  CAS  Google Scholar 

  4. Tanev, P. T. & Pinnavaia, T. J. Aneutral templating route to mesoporous molecular sieves. Science 267, 865–868 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Antonelli, D. M. & Ying, J. Y. Synthesis and characterization of hexagonal packed mesoporous tantalum oxide molecular sieves. Chem. Mater. 8, 874–881 (1996).

    Article  CAS  Google Scholar 

  6. Förster, S. & Antonietti, M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195–217 (1998).

    Article  Google Scholar 

  7. Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Tian, Z. et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276, 926–930 (1997).

    Article  CAS  Google Scholar 

  10. Bagshaw, S. A. & Pinnavaia, T. J. Mesoporous alumina molecular sieves. Angew. Chem. Int. Edn Engl. 35, 1102–1105 (1996).

    Article  CAS  Google Scholar 

  11. Antonelli, D. M. & Ying, J. Y. Synthesis of hexagonal packed mesoporous TiO2by a modified sol-gel method. Angew. Chem. Int. Edn Engl. 34, 2014–2017 (1995).

    Article  CAS  Google Scholar 

  12. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. & Schüth, F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Edn Engl. 35, 541–543 (1996).

    Article  CAS  Google Scholar 

  13. Liu, P., Liu, J. & Sayari, A. Preparation of porous hafnium oxide in the presence of a cationic surfactant. Chem. Commun. 557–578 (1997).

  14. Attard, G. S. et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838–840 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Ulagappan, N. & Rao, C. N. R. Mesoporous phases based on SnO2and TiO2. Chem. Commun. 1685–1686 (1996).

  16. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Sayari, A. & Liu, P. Non-silica mesostructured materials: recent progress. Microporous Mater. 12, 149–177 (1997).

    Article  CAS  Google Scholar 

  18. Stucky, G. D. et al. in The Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale 101–112 (Houston, Texas), (1996).

    Google Scholar 

  19. Monnier, A. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1302 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Beck, J. S. et al. Anew family of mesoporous molecular sieves prepared with liquid crystal templates. J.Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  21. Huang, Y., McCarthy, T. J. & Sachtler, W. M. Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure. Appl. Catal. A 148, 135–154 (1996).

    Article  CAS  Google Scholar 

  22. Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area and Porosity (Academic, London, (1982).

    Google Scholar 

  23. Bailey, F. E. J & Koleske, J. V. Alkylene Oxides and their Polymers (Marcel Dekker, New York, (1990).

    Google Scholar 

  24. Zhao, D. et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).

    Article  CAS  Google Scholar 

  25. Yang, P. et al. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 10, 2033–2036 (1998).

    Article  CAS  Google Scholar 

  26. Vioux, A. Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292–2299 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF and the US Army Research Office. This work made use of MRL Central Facilities supported by the NSF. B.F.C. is a Camille and Henry Dreyfus teacher-scholar and an Alfred P. Sloan research fellow. We thank BASF (Mt Olive, New Jersey) and Dow Chemicals for providing block copolymer surfactants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galen D. Stucky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Zhao, D., Margolese, D. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998). https://doi.org/10.1038/24132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing