Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cohesin Rec8 is required for reductional chromosome segregation at meiosis

Abstract

When cells exit from mitotic cell division, their sister chromatids lose cohesion and separate to opposite poles of the dividing cell, resulting in equational chromosome segregation. In contrast, the reductional segregation of the first stage of meiotic cell division (meiosis I) requires that sister chromatids remain associated through their centromeres and move together to the same pole. Centromeric cohesion is lost as cells exit from meiosis II and sister chromatids can then separate1,2,3,4. The fission yeast cohesin protein Rec8 is specific to and required for meiosis5,6,7,8. Here we show that Rec8 appears in the centromeres and adjacent chromosome arms during the pre-meiotic S phase. Centromeric Rec8 persists throughout meiosis I and disappears at anaphase of meiosis II. When the rec8 gene is deleted, sister chromatids separate at meiosis I, resulting in equational rather than reductional chromosome segregation. We propose that the persistence of Rec8 at centromeres during meiosis I maintains sister-chromatid cohesion, and that its presence in the centromere-adjacent regions orients the kinetochores so that sister chromatids move to the same pole. This results in the reductional pattern of chromosome segregation necessary to reduce a diploid zygote to haploid gametes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rec8 gene encodes a meiosis-specific cohesin and is phosphorylated.
Figure 2: Rec8 associated with centromeres and with centromere-proximal chromosome arm regions during meiosis.
Figure 3: Shift in behaviour from reductional to equational chromosome segregation during meiosis I in rec8 Δ.
Figure 4: Model for the action of mitotic and meiotic cohesins.

Similar content being viewed by others

References

  1. Miyazaki, W. Y. & Orr-Weaver, T. L. Sister-chromatid cohesion in mitosis and meiosis. Annu. Rev. Genet. 28, 167–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Bickel, S. E. & Orr-Weaver, T. L. Holding chromatids together to ensure they go their separate ways. BioEssays 18, 293–300 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kleckner, N. Meiosis: how could it work? Proc. Natl Ac. Sci. USA 93, 8167–8174 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Roeder, G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600–2621 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. DeVeaux, L. C. & Smith, G. R. Region-specific activators of meiotic recombination in Schizosaccharomyces pompe. Genes Dev. 8, 203–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Molnar, M., Bahler, J., Sipiczki, M. & Kohli, J. The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Guacci, V., Koshland, D. & Strunnikov, A. Adirect link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parisi, S.et al. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family, conserved from fission yeast to humans. Mol. Cell. Biol. 19, 3515–3528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nabeshima, K.et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211–3225 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakaseko, Y., Niwa, O. & Yanagida, M. Ameiotic mutant of the fission yeast Schizosaccharomyces pombe that produces mature asci containing two diploid spores. J. Bacteriorl. 157, 334–336 (1984).

    CAS  Google Scholar 

  12. Iino, Y. & Yamamoto, M. Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol. Gen. Genet. 198, 416–421 (1985).

    Article  CAS  Google Scholar 

  13. Chikashige, Y.et al. Composite motifs and repeat synmetry in S. pombe centromeres. Cell 57, 739–751 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Chikashige, Y.et al. Telomere-led premeiotic chromosome movement in fission yeast. Science 264, 270–273 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Horie, S.et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kishida, M., Nagai, T., Nakaseko, Y. & Shimoda, C. Meiosis-dependent mRNA splicing of the fission yeast Schizosaccharomyces pombe mes1+ gene. Curr. Genet. 25, 497–503 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Birkenbihl, R. P. & Subramani, S. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J. Biol. Chem. 270, 7703–7711 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Toth, A.et al. Yeast Cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ciosk, R.et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, T. T., Bickel, S. E., Young, L. M. & Orr-Weaver, T. L. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S322 protein. Genes Dev. 12, 3843–3856 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Bähler, J.et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  PubMed  Google Scholar 

  25. Cooper, J. P., Watanabe, Y. & Nurse, P. Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392, 828–831 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bähler, J., Wyler, T., Loidl, J. & Kohli, J. Unusual nuclear structures in meiosis prophase of fission yeast: a cytological analysis. J. Cell Biol. 121, 241–256 (1993).

    Article  PubMed  Google Scholar 

  27. Klein, F.et al. Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J. Cell Biol. 117, 9335–948 (1992).

    Article  Google Scholar 

  28. Birkenbihl, R. P. & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nomura, N.et al. Prediction of the coding sequences of unidentified human genes. DNA Res. 1, 223–229 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Yamamoto, M. Yanagida and S. Subramani for plasmids and strains; J.Bähler, J. Cooper and J. Hayles for advice with the manuscript; and J. Kohli and M. McKay for communicating results before publication. Y.W. thanks all the members of P. Nurse's lab for advice and reagents, and the ICRF staff and M. Yamamoto for support. Y.W. was supported by JSPS and a Uehara fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999). https://doi.org/10.1038/22774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22774

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing