Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visual interactions in the path of apparent motion

Abstract

When two stationary visual objects appear in alternating sequence, they evoke the perception of a single object moving back and forth between them. This is known as stroboscopic or apparent motion and forms the basis of perceived continuity in, for example, motion pictures. When the spatiotemporal separation between the inducing objects is optimal, the subjective appearance of apparent motion is nearly indistinguishable from that of real motion. Here we report that the detection and identification of a simple visual form in the path of apparent motion is impaired by the illusory perception of an object moving through the empty space between the locations at which the inducing objects are presented. This observation may be a manifestation of perceptual completion or 'filling in' during apparent motion perception. We propose that feedback from higher to lower visual cortical areas activates an explicit neural representation of a moving object, which can then disrupt the representation of visual stimuli in the path of the movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bistable apparent motion quartet.
Figure 2: Stimulus display, Experiments 1 and 2.
Figure 3: Data from Experiment 2.
Figure 4: Motion quartets with paths, Experiment 3.

Similar content being viewed by others

References

  1. Kanizsa, G. Organization in Vision (Prager, New York, 1979).

    Google Scholar 

  2. Kellman, P. J. & Shipley, T. F. A theory of visual interpolation in object perception. Cogn. Psychol. 141– 221 (1991).

  3. Michotte, A., Thinès, G. & Crabbé, G. in Michotte's Experimental Phenomenology of Perception (eds Thinès, G., Costall, A. & Butterworth, G.; trans Miles, E. & Miles, T. R.) 140– 167 (Erlbaum, Hillsdale, New Jersey, 1991; originally published 1964).

  4. Rock, I. The Logic of Perception (MIT Press, Cambridge, Massachusetts, 1983).

  5. Shimojo, S. & Nakayama, K. Amodal representation of occluded surfaces: Role of invisible stimuli in apparent motion correspondence. Perception 19, 285–299 (1990).

    Article  Google Scholar 

  6. von der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1261 (1984).

    Article  CAS  Google Scholar 

  7. Wertheimer, M. Experimentelle studien über das sehen von bewegung. Z. Psychol. 61, 161–265 (1912).

    Google Scholar 

  8. Kolers, P. A. Aspects of Motion Perception (Pergamon, New York, 1972).

  9. Burt, P. & Sperling, G. Time, distance, and feature trade-offs in visual apparent motion. Psychol. Rev. 88, 171–195 (1981).

    Article  CAS  Google Scholar 

  10. Ramachandran, V. S. & Anstis, S. M. Perceptual organization in moving patterns. Nature 304, 529– 531 (1983).

    Article  CAS  Google Scholar 

  11. Albright, T. D. & Stoner, G. R. Visual motion perception. Proc. Natl. Acad. Sci. USA 92, 2433–2440 (1995).

    Article  CAS  Google Scholar 

  12. Shepard, R. N. & Judd, S. A. Perceptual illusion of rotation of three-dimensional objects. Science 191 , 952–954 (1976).

    Article  CAS  Google Scholar 

  13. Robins, C. & Shepard, R. N. Spatio-temporal probing of apparent rotational movement. Percept. Psychophys. 22, 12–18 (1977).

    Article  Google Scholar 

  14. Beck, J., Elsner, A. & Silverstein, C. Position uncertainty and the perception of apparent motion. Percept. Psychophys. 21, 33– 38 (1977).

    Article  Google Scholar 

  15. Farrell, J. E. & Shepard, R. N. Shape, orientation, and apparent rotational motion. J. Exp. Psychol. Hum. Percept. Perform. 7, 477–486 (1981).

    Article  CAS  Google Scholar 

  16. Bundesen, C., Larsen, A. & Farrell, J. E. Visual apparent movement: Transformations of size and orientation. Perception 12, 549– 558 (1983).

    Article  CAS  Google Scholar 

  17. Hock, H. S., Kelso, J. A. S. & Schöner, G. Bistability and hysteresis in the organization of apparent motion patterns. J. Exp. Psychol. Hum. Percept. Perform. 19, 63–80 (1993).

    Article  CAS  Google Scholar 

  18. Korte, A. Kinematoskopische untersuchungen. Z. Psychol. 72, 194–296 (1915).

    Google Scholar 

  19. Neuhaus, W. Experimentelle untersuchung der scheinbewegung. Arch. Ges. Psychol. 75, 315–458 (1930).

    Google Scholar 

  20. Cavanagh, P. Attention-based motion perception. Science 257, 1563–1565 (1992).

    Article  CAS  Google Scholar 

  21. Yantis, S. Multielement visual tracking: Attention and perceptual organization. Cogn. Psychol. 24, 295–340 (1992).

    Article  Google Scholar 

  22. Horowitz T. & Treisman, A. Attention and apparent motion. Spatial Vis. 8, 193–219 (1994).

    Article  CAS  Google Scholar 

  23. Shepard, R. N. & Zare, S. L. Path-guided apparent motion. Science 220, 632– 634 (1983).

    Article  CAS  Google Scholar 

  24. Kolers, P. A. Some differences between real and apparent visual movement. Vision Res. 3, 191–206 (1963).

    Article  Google Scholar 

  25. Attneave, F. & Block, G. Absence of masking in the path of apparent movement. Percept. Psychophys. 16, 205–207 (1974).

    Article  Google Scholar 

  26. Mikami, A., Newsome, W. T. & Wurtz, R. H. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J. Neurophysiol. 55, 1328–1339 (1986).

    Article  CAS  Google Scholar 

  27. Newsome, W. T., Mikami, A. & Wurtz, R. H. Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. J. Neurophysiol. 55, 1340–1351 (1986).

    Article  CAS  Google Scholar 

  28. Mikami, A. Direction selective neurons respond to short-range nd long-range apparent motion stimuli in Macaque visual area MT. Int. J. Neurosci. 61, 101–112 (1991).

    Article  CAS  Google Scholar 

  29. Zeki, S. & Shipp, S. The functional logic of cortical connections . Nature 335, 311–317 (1988).

    Article  CAS  Google Scholar 

  30. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  31. Sillito, A. M, Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479– 482 (1994).

    Article  CAS  Google Scholar 

  32. Ramachandran, V. S. & Gregory, R. L. Perceptual filling in of artificially induced scotomas in human vision. Nature 350, 699–702 (1991).

    Article  CAS  Google Scholar 

  33. De Weerd, P., Gattass, R., Desimone, R. & Ungerleider, L. G. Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377, 731– 734 (1995).

    Article  CAS  Google Scholar 

  34. Hogben, J. H. & Di Lollo, V. Suppression of visible persistence in apparent motion. Percept. Psychophys. 38, 450–460 (1985).

    Article  CAS  Google Scholar 

  35. Watamaniuk, S. N. Visible persistence is reduced by fixed-trajectory motion but not by random motion. Perception 21, 791– 802 (1992).

    Article  CAS  Google Scholar 

  36. Van Essen, D. C. & Gallant, J. L. Neural mechanisms of form and motion processing in the primate visual system. Neuron 13, 1–10 (1994 ).

    Article  CAS  Google Scholar 

  37. Breitmeyer, B., Love, R. & Wepman, B. Contour suppression during stroboscopic motion and metacontrast . Vision Res. 14, 1451– 1456 (1974).

    Article  CAS  Google Scholar 

  38. Breitmeyer, B. G. Visual Masking (Oxford Univ. Press, New York, 1984).

  39. Grossberg, S. & Rudd, M. E. Cortical dynamics of visual motion perception: Short-range and long-range apparent motion. Psychol. Rev. 99, 78–121 (1992).

    Article  CAS  Google Scholar 

  40. Baloch, A. A. & Grossberg, S. A neural model of high-level motion processing: line motion and formotion dynamics. Vision Res. 37, 3037–3059 (1997).

    Article  CAS  Google Scholar 

  41. Finkel, L. H. & Edelman, G. M. Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J. Neurosci. 9, 3188– 3208 (1989).

    Article  CAS  Google Scholar 

  42. Tononi, G., Sporns, O. & Edelman, G. M. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb. Cortex 2, 310–335 (1992).

    Article  CAS  Google Scholar 

  43. Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467–477 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Bundesen, C. Connor, V. Di Lollo, H. Egeth, J. Enns and M. Rudd for valuable discussions. This work was supported by grant R01-MH43924 from the U.S. National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Yantis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yantis, S., Nakama, T. Visual interactions in the path of apparent motion. Nat Neurosci 1, 508–512 (1998). https://doi.org/10.1038/2226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing