Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites

Abstract

Human serum albumin (HSA) is the most abundant protein in the circulatory system. Its principal function is to transport fatty acids, but it is also capable of binding a great variety of metabolites and drugs. Despite intensive efforts, the detailed structural basis of fatty acid binding to HSA has remained elusive. We have now determined the crystal structure of HSA complexed with five molecules of myristate at 2.5 Å resolution. The fatty acid molecules bind in long, hydrophobic pockets capped by polar side chains, many of which are basic. These pockets are distributed asymmetrically throughout the HSA molecule, despite its symmetrical repeating domain structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of HSA and location of myristate and TIB binding sites.
Figure 2: The distribution of myristate binding sites is highly asymmetric despite the structural homologies between domains of HSA.
Figure 3: Stereo diagram of the simulated annealing Fo - Fc omit map contoured at 2.75σ, showing difference electron density (grey) for Myr 3 and Myr 4 bound within sub-domain IIIA (blue).
Figure 4: Superposition of unliganded HSA (PDB code 1ao6) and HSA−myristate reveals the dramatic nature of the conformational change that occurs upon binding of the fatty acid.
Figure 5: a, Superposition of sub-domains IIIA and IIIB highlights the similarities and differences in secondary structure and demonstrates that they bind myristate in quite disparate configurations.
Figure 6: Binding interactions for TIB1 and Myr 2 in sub-domain IIA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Peters, T. All about albumin: biochemistry, genetics and medical applications. (Academic Press, San Diego; 1996).

    Google Scholar 

  2. Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Danish Medical Bulletin 37, 57–84 (1990).

    CAS  PubMed  Google Scholar 

  3. Carter, D. C. & Ho, J. X. Structure of serum albumin. Adv. Protein Chem. 45, 152–203 (1994).

    Google Scholar 

  4. Hamilton, J. A., Cistola, D. P., Morrisett, J. D., Sparrow, J. T. & Small, D. M. Interactions of myristic acid with bovine serum albumin: A 13C NMR study. Proc. Natl. Acad. Sci. USA 81, 3718–3722 (1984).

    Article  CAS  Google Scholar 

  5. Hamilton, J. A., Era, S., Bhamidipati, S. P. & Reed, R. G. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. Proc. Natl. Acad. Sci. USA 88, 2051–2054 (1991).

    Article  CAS  Google Scholar 

  6. Reed, R. G. Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J. Biol. Chem. 261, 15619–15624 (1986).

    CAS  PubMed  Google Scholar 

  7. Sklar, L. A., Hudson, B. S. & Simoni, R. D. Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. Biochemistry. 16, 5100–5108 (1977).

    Article  CAS  Google Scholar 

  8. Spector, A. Fatty acid binding to plasma albumin. J. Lipid Res. 16, 165–179 (1975).

    CAS  PubMed  Google Scholar 

  9. Rang, H. P., Dale, M. M. & Ritter, J. M. Pharmacology, 3rd. ed. (Churchill Livingstone, New York; 1995).

    Google Scholar 

  10. He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature. 358, 209–215 (1992).

    Article  CAS  Google Scholar 

  11. Ho, J. X., Holowachuk, E. W., Norton, E. J., Twigg, P. D. & Carter, D. C. X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. Eur. J. Biochem. 215, 205–212 (1993).

    Article  CAS  Google Scholar 

  12. Vorum, H. & Honoré, B. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy. J. Pharm. Pharmacol. 48, 870–875 (1996).

    Article  CAS  Google Scholar 

  13. Reed, R. Kinetics of bilirubin binding to bovine serum albumin and the effects of palmitate. J. Biol. Chem. 252, 7483–7487 (1977).

    CAS  PubMed  Google Scholar 

  14. Hodel, A., Kim, S. H. & Brünger, A. T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).

    Article  CAS  Google Scholar 

  15. Peters, T. Serum Albumin. Adv. Prot. Chem. 37, 161–245 (1985).

    CAS  Google Scholar 

  16. Cistola, D. P., Small, D. M. & Hamilton, J. A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites. J. Biol. Chem. 262, 10971–10979 (1987).

    CAS  PubMed  Google Scholar 

  17. Cistola, D. P., Small, D. M. & Hamilton, J. A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. II. Electrostatic interactions in individual fatty acid binding sites. J. Biol. Chem. 262, 10980–10985 (1987).

    CAS  PubMed  Google Scholar 

  18. Young, A. C. et al. Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: binding interactions with three C18 fatty acids. Structure. 2, 523–534 (1994).

    Article  CAS  Google Scholar 

  19. Lalonde, J. M., Levenson, M. A., Roe, J. J., Bernlohr, D. A. & Banaszak, L. J. Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies. J. Biol. Chem. 269, 25339–25347 (1994).

    CAS  PubMed  Google Scholar 

  20. Thompson, J., Winter, N., Terwey, D., Bratt, J. & Banaszak, L. The crystal structure of the liver fatty acid-binding protein. J. Biol. Chem. 272, 7140–7150 (1997).

    Article  CAS  Google Scholar 

  21. Carter, D. C., Chang, B., Ho, J. X., Keeling, K. & Krishnasami, Z. Preliminary crystallographic studies of four crystal forms of serum albumin. Eur. J. Biochem. 226, 1049–1052 (1994).

    Article  CAS  Google Scholar 

  22. Stura, E. A. & Wilson, I. A. Analytical and production seeding techniques. Methods 1, 38–49 (1990).

    Article  Google Scholar 

  23. Ashbrook, J. D., Spector, A. A. & Fletcher, J. E. Medium chain fatty acid binding to human plasma albumin. J. Biol. Chem. 247, 7030–7042 (1972).

    Google Scholar 

  24. Sheldrick, G. in Isomorphous replacement and anomalous scattering: Proceedings of the CCP4 study weekend 25–26 January 1991, (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 23–38 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  25. Otwinowski, Z. in Isomorphous replacement and anomalous scattering: Proceedings of the CCP4 study weekend 25–26 January 1991 (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  26. Collaborative Computer Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  27. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  29. Esnouf, R. An extensively modified version of Molscript that includes greatly enhanced colouring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  30. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merrit, E. A. & Murphy, M. E. P. Raster3D Version 2.0 - a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Delta Biotechnology Ltd. for providing all of the recombinant HSA used in this study. We thank A. Bhattacharya and the staff at both the Synchrotron Radiation Source, Daresbury Laboratory and at DESY, Hamburg for their assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Curry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, S., Mandelkow, H., Brick, P. et al. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Mol Biol 5, 827–835 (1998). https://doi.org/10.1038/1869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing