Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CBP-independent activation of CREM and CREB by the LIM-only protein ACT

Abstract

Transcriptional activation by CREB and CREM requires phosphorylation of a serine residue within the activation domain (Ser 133 in CREB; Ser 117 in CREM) which as a result interacts with the coactivator CBP1,2. The activator CREM is highly expressed in male germ cells and is required for post-meiotic gene expression2,3,4. Using a two-hybrid screen, we have isolated a testis-derived complementary DNA encoding a protein that we term ACT (for activator of CREM in testis), a LIM-only protein which specifically associates with CREM. ACT is expressed coordinately with CREM in a tissue- and developmentally regulated manner. It strongly stimulates CREM transcriptional activity in yeast and mammalian cells and contains an intrinsic activation function. As ACT bypasses the classical requirements for activation, namely phosphorylation of Ser 117 and interaction with CBP, it represents a new route for transcriptional activation by CREM and CREB. ACT may define a previously undiscovered class of tissue-specific coactivators whose function could be specific for distinct cellular differentiation programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of a CREM coactivator in testis by yeast two-hybrid assay.
Figure 2: Analysis of ACT expression.
Figure 3: ACT associates with CREM.
Figure 4: ACT is a coactivator.
Figure 5: CREM Ser 117 phosphorylation is not required for ACT function.

Similar content being viewed by others

References

  1. Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822 (1997).

    Article  CAS  Google Scholar 

  2. Sassone-Corsi, P. Transcription factors responsive to cAMP. Annu. Rev. Cell Dev. Biol. 11, 355–377 (1995).

    Article  CAS  Google Scholar 

  3. Sassone-Corsi, P. Transcriptional checkpoints determining the fate of male germ cells. Cell 88, 163–166 (1997).

    Article  CAS  Google Scholar 

  4. Foulkes, N. S., Mellström, B., Benusiglio, E. & Sassone-Corsi, P. Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 355, 80–84 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Ferreri, K., Gill, G. & Montminy, M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl Acad. Sci. USA 91, 1210–1213 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Nantel, F. et al. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Blendy, J. A., Kaestner, K. H., Weinbauer, G. F., Nieschlag, E. & Schutz, G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Dawid, I. B., Breen, J. J. & Toyama, R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 14, 156–162 (1998).

    Article  CAS  Google Scholar 

  9. Curtiss, J. & Heilig, J. S. DeLIMiting development. BioEssays 20, 58–69 (1998).

    Article  CAS  Google Scholar 

  10. Delmas, V., van der Hoorn, F., Mellstrom, B., Jegou, B. & Sassone-Corsi, P. Induction of CREM activator proteins in spermatids: down-stream targets and implications for haploid germ cell differentiation. Mol. Endocrinol. 7, 1502–1514 (1993).

    CAS  PubMed  Google Scholar 

  11. Molina, C. A., Foulkes, N. S., Lalli, E. & Sassone-Corsi, P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875–886 (1993).

    Article  CAS  Google Scholar 

  12. Laoide, B. M., Foulkes, N. S., Schlotter, F. & Sassone-Corsi, P. The functional versatility of CREM is determined by its modular structure. EMBO J. 12, 1179–1191 (1993).

    Article  CAS  Google Scholar 

  13. Martinez-Balbas, M. A. et al. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17, 2886–2893 (1998).

    Article  CAS  Google Scholar 

  14. Zhou, Y., Sun, Z., Means, A. R., Sassone-Corsi, P. & Bernstein, K. E. CREMτ is a positive regulator of testis ACE transcription. Proc. Natl Acad. Sci. USA 93, 12262–12266 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Sun, Z., Sassone-Corsi, P. & Means, A. R. Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the Calmodulin Kinase IV gene. Mol. Cell. Biol. 15, 561–571 (1995).

    Article  CAS  Google Scholar 

  16. Kunzler, M., Braus, G. H., Georgiev, O., Seipel, K. & Schaffner, W. Functional differences between mammalian transcription activation domains at the yeast GAL1 promoter. EMBO J. 13, 641–645 (1994).

    Article  CAS  Google Scholar 

  17. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229 (1994).

    Article  ADS  CAS  Google Scholar 

  20. de Groot, R. P., den Hertog, J., Vandenheede, J. R., Goris, J. & Sassone-Corsi, P. Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J. 12, 3903–3911 (1993).

    Article  CAS  Google Scholar 

  21. Gonzalez, G. A. & Montminy M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Ser 133. Cell 59, 675–680 (1989).

    Article  CAS  Google Scholar 

  22. Valge-Archer, V. E. et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc. Natl Acad. Sci. USA 91, 8617–8621 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Wadman, I. et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J. 13, 4831–4839 (1994).

    Article  CAS  Google Scholar 

  24. Osada, H., Grutz, G., Axelson, H., Forster, A. & Rabbitts, T. H. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl Acad. Sci. USA 92, 9585–9589 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Kong, Y., Flick, M. J., Kudla, A. J. & Konieczny, S. F. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17, 4750–4760 (1997).

    Article  CAS  Google Scholar 

  26. Sheng, M., Thompson, M. A. & Greenberg M. E. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  28. Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64, 739–749 (1991).

    Article  CAS  Google Scholar 

  29. Green, S., Issemann, I. & Sheer, E. Aversatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res. 16, 369 (1988).

    Article  CAS  Google Scholar 

  30. Rupp, R. A., Snider, L. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Monaco, N. S. Foulkes, A. R. Means, K. E. Bernstein, T. Kouzarides, K.Tamai, E. Heitz and all the members of the Sassone-Corsi laboratory for help, reagents and discussions. G. M. F. and D. D. C. were supported by post-doctoral fellowships from the European Community. This work was supported by grants from Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Régional, Fondation de la Recherche Médicale, Université Louis Pasteur and Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Sassone-Corsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fimia, G., Cesare, D. & Sassone-Corsi, P. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 398, 165–169 (1999). https://doi.org/10.1038/18237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18237

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing