Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop

Abstract

The transcription factor NF-κB is an important regulator of gene expression during immune and inflammatory responses, and can also protect against apoptosis. Here we show that endothelial cells undergo apoptosis when deprived of growth factors. Surviving viable cells exhibit increased activity of NF-κB, whereas apoptotic cells show caspase-mediated cleavage of the NF-κB p65/RelA subunit. This cleavage leads to loss of carboxy-terminal transactivation domains and a transcriptionally inactive p65 molecule. The truncated p65 acts as a dominant-negative inhibitor of NF-κB, promoting apoptosis, whereas an uncleavable, caspase-resistant p65 protects the cells from apoptosis. The generation of a dominant-negative fragment of p65 during apoptosis may be an efficient pro-apoptotic feedback mechanism between caspase activation and NF-κB inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: After deprivation of growth factors, NF-κB’s DNA-binding activity is induced in viable cells and is molecularly altered in apoptotic cells.
Figure 2: NF-κB transcriptional activity is induced in cells surviving growth-factor deprivation.
Figure 3: A proteolytic fragment of p65 appears during apoptosis induced by growth-factor deprivation.
Figure 4: p65 is a substrate for caspases in vitro and in vivo.
Figure 5: Identification of the caspase-cleavage sites in p65 and construction of uncleavable and truncation mutants.
Figure 6: Uncleavable p65 maintains κB-dependent transcription and rescues HUVECs from apoptosis.
Figure 7: The p65 truncation mutant inhibits the increase in κB-dependent transcription and survival induced by overexpression of wild-type p65.

Similar content being viewed by others

References

  1. Baeuerle, P. A. & Baltimore, D. NF-κB: Ten years after. Cell 87, 13–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sovak, M. A. et al. Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100, 2952–2960 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bargou, R. C. et al. Constitutive nuclear factor-kappa B-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Invest. 100, 2961–2969 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scatena, M. et al. NF-κB mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141, 1083–1093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Maniatis, T. Catalysis by a multiprotein IκB kinase complex. Science 278, 818–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Stancovski, I. & Baltimore, D. NF-κB activation: the IκB kinase revealed? Cell 91, 299–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Gerritsen, M. E. et al. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl Acad. Sci. USA 94, 2927–2932 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Meikrantz, W. & Schlegel, R. Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases. J. Biol. Chem. 271, 10205–10209 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Levkau, B. et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol. Cell 1, 553–563 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Levkau, B., Herren, B., Koyama, H., Ross, R. & Raines, E. W. Caspase-mediated cleavage of pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J. Exp. Med. 187, 579–586 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Talanian, R. V. et al. Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Thornberry, N. A. Caspases: key mediators of apoptosis. Chem. Biol. 5, R97–R103 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz, M. L. et al. Structural and functional analysis of the NF-κB p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J. Biol. Chem. 269, 25613–25620 (1994).

    CAS  PubMed  Google Scholar 

  25. Grimm, S., Bauer, M. K., Baeuerle, P. A. & Schulze Osthoff, K. Bcl-2 down-regulates the activity of transcription factor NF-κB induced upon apoptosis. J. Cell Biol. 134, 13–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Karsan, A., Yee, E. & Harlan, J. M. Endothelial cell death induced by tumor necrosis factor-α is inhibited by the Bcl-2 family member A1. J. Biol. Chem. 271, 27201–27204 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Grilli, M., Goffi, F., Memo, M. & Spano, P. Interleukin-1β and glutamate activate the NF-κB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J. Biol. Chem. 271, 15002–15007 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Baichwal, V. R. & Baeuerle, P. A. Activate NF-κB or die? Curr. Biol. 7, R94–R96 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Mandal, M. et al. Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly(ADP-ribose) polymerase and restores the NF-κB signaling pathway. J. Biol. Chem. 271, 30354–30359 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ponton, A., Cl’ement, M. V. & Stamenkovic, I. The CD95 (APO-1/Fas) receptor activates NF-κB independently of its cytotoxic function. J. Biol. Chem. 271, 8991–8995 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Rensing Ehl, A. et al. Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur. J. Immunol. 25, 2253–2258 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Schulze Osthoff, K., Krammer, P. H. & Droge, W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13, 4587–4596 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ravi, R., Bedi, A., Fuchs, E. J. & Bedi, A. CD95 (Fas)-induced caspase-mediated proteolysis of NF-κB. Cancer Res. 58, 882–886 (1998).

    CAS  PubMed  Google Scholar 

  34. Cheng, E. H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Barkett, M., Xue, D., Horvitz, H. R. & Gilmore, T. D. Phosphorylation of IκB-α inhibits its cleavage by caspase CPP32 in vitro. J. Biol. Chem. 272, 29419–29422 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Thanos, D. & Maniatis, T. NF-κB: a lesson in family values. Cell 80, 529–532 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Qwarnstrom, E. E., Ostberg, C. O., Turk, G. L., Richardson, C. A. & Bomsztyk, K. Fibronectin attachment activates the NF-κB p50/p65 heterodimer in fibroblasts and smooth muscle cells. J. Biol. Chem. 269, 30765–30768 (1994).

    CAS  PubMed  Google Scholar 

  38. Guo, X., Zhang, Y. P., Mitchell, D. A., Denhardt, D. T. & Chambers, A. F. Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Mol. Cell. Biol. 15, 476–487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, K. A., Bindereif, A. & Green, M. R. A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene. Anal. Tech. 5, 22–31 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Malyankar for helpful discussions and M. Almeida for technical assistance. This study was supported by NIH grant HL18645 (to R.R., E.W.R. and C.M.G.), National Science Foundation grant EEC9529161 (to C.M.G) and Innovative Medizinische Forschung grant LE 129835 (to B.L.).

Correspondence and requests for materials should be addressed to E.W.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine W. Raines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levkau, B., Scatena, M., Giachelli, C. et al. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop. Nat Cell Biol 1, 227–233 (1999). https://doi.org/10.1038/12050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing