Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIKE-A is a proto-oncogene promoting cell growth, transformation and invasion

Abstract

PIKE-A (phosphoinositide 3-kinases (PI 3)-kinase enhancer) is a ubiquitously expressed GTPase, which binds to and enhances protein kinase B (Akt) kinase activity in a guanine nucleotide-dependent manner. PIKE-A is one of the components of the CDK4 amplicon that is amplified in numerous human cancers. However, whether PIKE-A itself can mediate cell transformation, proliferation and migration remains unknown. Here, we show that PIKE-A is overexpressed in various human cancer samples, escalates U87MG glioblastoma invasion and provokes NIH3T3 cell transformation. Overexpression of wild-type (WT) PIKE-A enhances NIH3T3 and U87MG cell growth, which is further increased by cancer cell-derived PIKE-A active mutants. In contrast, both the dominant-negative mutant and the phosphoinositide lipids interaction-defective mutant antagonize cell proliferation. Moreover, PIKE-A and its active and inactive mutants similarly enhance or antagonize U87MG cell survival and invasion, and their ability to do so is coupled with the catalytic effect they have on Akt activation. Furthermore, PIKE-A WT and its active mutants significantly elicit NIH3T3 cell transformation. Thus, our findings support the concept that PIKE-A acts as a proto-oncogene, promoting cell transformation through Akt activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahn JY, Hu Y, Kroll TG, Allard P, Ye K . (2004a). PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt. Proc Natl Acad Sci USA 101: 6993–6998.

    Article  CAS  PubMed  Google Scholar 

  • Ahn JY, Rong R, Kroll TG, Van Meir EG, Snyder SH, Ye K . (2004b). PIKE (Phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. J Biol Chem 279: 16441–16451.

    Article  CAS  PubMed  Google Scholar 

  • Ahn JY, Rong R, Liu X, Ye K . (2004c). PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus. EMBO J 23: 3995–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellacosa A, Testa JR, Staal SP, Tsichlis PN . (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254: 274–277.

    Article  CAS  PubMed  Google Scholar 

  • Brazil DP, Park J, Hemmings BA . (2002). PKB binding proteins. Getting in on the Akt. Cell 111: 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC et al. (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89: 9267–9271.

    Article  CAS  PubMed  Google Scholar 

  • Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK et al. (1996). Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93: 3636–3641.

    Article  CAS  PubMed  Google Scholar 

  • Coffer PJ, Jin J, Woodgett JR . (1998). Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335 (Part 1): 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins VP . (1995). Gene amplification in human gliomas. Glia 15: 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Der CJ . (1994). Biological assays for cellular transformation. Methods Enzymol 238: 277–294.

    Article  CAS  PubMed  Google Scholar 

  • Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR et al. (1999). Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274: 30101–30108.

    Article  CAS  PubMed  Google Scholar 

  • Hill MM, Hemmings BA . (2002). Inhibition of protein kinase B/Akt: Implication for cancer therapy. Pharmacol Ther 93: 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liu Z, Ye K . (2005). Phosphoinositol lipids bind to phosphatidylinositol 3 (PI3) kinase enhancer GTPase and mediate its stimulatory effect on PI3-kinase and Akt signalings. Proc Natl Acad Sci USA 102: 16853–16858.

    Article  CAS  PubMed  Google Scholar 

  • Huang ZY, Baldwin RL, Hedrick NM, Gutmann DH . (2002). Astrocyte-specific expression of CDK4 is not sufficient for tumor formation, but cooperates with p53 heterozygosity to provide a growth advantage for astrocytes in vivo. Oncogene 21: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS et al. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 8: 693–704.

    Article  CAS  PubMed  Google Scholar 

  • Nakatani K, Sakaue H, Thompson DA, Weigel RJ, Roth RA . (1999). Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun 257: 906–910.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson KM, Anderson NG . (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14: 381–395.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Park BK, Zeng X, Glazer RI . (2001). Akt1 induces extracellular matrix invasion and matrix matalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647–7653.

    CAS  PubMed  Google Scholar 

  • Reifenberger G, Reifenberger J, Ichimura K, Collins VP . (1995). Amplification at 12q13–14 in human malignant gliomas is frequently accompanied by loss of heterozygosity at loci proximal and distal to the amplification site. Cancer Res 55: 731–734.

    CAS  PubMed  Google Scholar 

  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP . (1994). Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: Preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54: 4299–4303.

    CAS  PubMed  Google Scholar 

  • Rempel SA, Golembieski WA, Fisher JL, Maile M, Nakeff A . (2001). SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J Neurooncol 53: 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Rong R, Ahn JY, Huang H, Nagata E, Kalman D, Kapp JA et al. (2003). PI3 kinase enhancer-Homer complex couples mGIuRI to PI3 kinase, preventing neuronal apoptosis. Nat Neurosci 6: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Smith SH, Weiss SW, Jankowski SA, Coccia MA, Meltzer PS . (1992). SAS amplification in soft tissue sarcomas. Cancer Res 52: 3746–3749.

    CAS  PubMed  Google Scholar 

  • Staal SP . (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: Amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84: 5034–5037.

    Article  CAS  PubMed  Google Scholar 

  • Ye K . (2005). PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J Cell Biochem 96: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Aghdasi B, Luo HR, Moriarity JL, Wu FY, Hong JJ et al. (2002). Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415: 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ et al. (2000). Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103: 919–930.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from NIH (RO1, NS045627) and The Sontag Foundation to K Ye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Hu, Y., Hao, C. et al. PIKE-A is a proto-oncogene promoting cell growth, transformation and invasion. Oncogene 26, 4918–4927 (2007). https://doi.org/10.1038/sj.onc.1210290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210290

Keywords

This article is cited by

Search

Quick links