Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes Fusion Genes and Tumor Suppressor Genes

Proteomic discovery of Max as a novel interacting partner of C/EBPα: a Myc/Max/Mad link

Abstract

The transcription factor CCAAT/enhancer binding protein a (C/EBPα) is important in the regulation of granulopoiesis and is disrupted in human acute myeloid leukemia. In the present study, we sought to identify novel C/EBPα interacting proteins in vivo through immunoprecipitation using mass spectrometry-based proteomic techniques. We identified Max, a heterodimeric partner of Myc, as one of the interacting proteins of C/EBPα in our screen. We confirmed the in vivo interaction of C/EBPα with Max and showed that this interaction involves the basic region of C/EBPα. Endogenous C/EBPα and Max, but not Myc and Max, colocalize in intranuclear structures during granulocytic differentiation of myeloid U937 cells. Max enhanced the transactivation capacity of C/EBPα on a minimal promoter. A chromatin immunoprecipitation assay revealed occupancy of the human C/EBPα promoter in vivo by Max and Myc under cellular settings and by C/EBPα and Max under retinoic acid induced granulocytic differentiation. Interestingly, enforced expression of Max and C/EBPα results in granulocytic differentiation of the human hematopoietic CD34+ cells, as evidenced by CD11b, CD15 and granulocyte colony-stimulating factor receptor expression. Silencing of Max by short hairpin RNA in CD34+ and U937 cells strongly reduced the differentiation-inducing potential of C/EBPα, indicating the importance of C/EBPα–Max in myeloid progenitor differentiation. Taken together, our data reveal Max as a novel co-activator of C/EBPα functions, thereby suggesting a possible link between C/EBPα and Myc–Max–Mad network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Scott LM, Civin CI, Rorth P, Friedman AD . A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992; 80: 1725–1735.

    CAS  Google Scholar 

  2. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94: 569–574.

    Article  CAS  Google Scholar 

  3. Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004; 21: 853–863.

    Article  CAS  Google Scholar 

  4. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  Google Scholar 

  5. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  Google Scholar 

  6. Rangatia J, Vangala RK, Treiber N, Zhang P, Radomska H, Tenen DG et al. Downregulation of c-Jun expression by transcription factor C/EBPalpha is critical for granulocytic lineage commitment. Mol Cell Biol 2002; 22: 8681–8694.

    Article  CAS  Google Scholar 

  7. Reddy VA, Iwama A, Iotzova G, Schulz M, Elsasser A, Vangala RK et al. Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 2002; 100: 483–490.

    Article  CAS  Google Scholar 

  8. Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L et al. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell 2001; 107: 247–258.

    Article  CAS  Google Scholar 

  9. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ . CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 1996; 10: 804–815.

    Article  CAS  Google Scholar 

  10. Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell 2001; 8: 817–828.

    Article  CAS  Google Scholar 

  11. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–699.

    Article  CAS  Google Scholar 

  12. Atchley WR, Fernandes AD . Sequence signatures and the probabilistic identification of proteins in the Myc–Max–Mad network. Proc Natl Acad Sci USA 2005; 102: 6401–6406.

    Article  CAS  Google Scholar 

  13. Holzel M, Kohlhuber F, Schlosser I, Holzel D, Luscher B, Eick D . Myc/Max/Mad regulate the frequency but not the duration of productive cell cycles. EMBO Rep 2001; 2: 1125–1132.

    Article  CAS  Google Scholar 

  14. Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 1995; 14: 5646–5659.

    Article  CAS  Google Scholar 

  15. Nilsson JA, Maclean KH, Keller UB, Pendeville H, Baudino TA, Cleveland JL . Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol Cell Biol 2004; 24: 1560–1569.

    Article  CAS  Google Scholar 

  16. Blackwood EM, Luscher B, Kretzner L, Eisenman RN . The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol 1991; 56: 109–117.

    Article  CAS  Google Scholar 

  17. Kato GJ, Lee WM, Chen LL, Dang CV . Max: functional domains and interaction with c-Myc. Genes Dev 1992; 6: 81–92.

    Article  CAS  Google Scholar 

  18. James L, Eisenman RN . Myc and Mad bHLHZ domains possess identical DNA-binding specificities but only partially overlapping functions in vivo. Proc Natl Acad Sci USA 2002; 99: 10429–10434.

    Article  CAS  Google Scholar 

  19. Luscher B . Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 2001; 277: 1–14.

    Article  CAS  Google Scholar 

  20. Kretzner L, Blackwood EM, Eisenman RN . Myc and Max proteins possess distinct transcriptional activities. Nature 1992; 359: 426–429.

    Article  CAS  Google Scholar 

  21. Legraverend C, Antonson P, Flodby P, Xanthopoulos KG . High level activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter involves autoregulation and several ubiquitous transcription factors. Nucleic Acids Res 1993; 21: 1735–1742.

    Article  CAS  Google Scholar 

  22. D'Alo' F, Johansen LM, Nelson EA, Radomska HS, Evans EK, Zhang P et al. The amino terminal and E2F interaction domains are critical for C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. Blood 2003; 102: 3163–3171.

    Article  CAS  Google Scholar 

  23. Zada AA, Singh SM, Reddy VA, Elsasser A, Meisel A, Haferlach T et al. Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 2003; 22: 2296–2308.

    Article  CAS  Google Scholar 

  24. Ayer DE, Eisenman RN . A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7: 2110–2119.

    Article  CAS  Google Scholar 

  25. Kohlhuber F, Hermeking H, Graessmann A, Eick D . Induction of apoptosis by the c-Myc helix–loop–helix/leucine zipper domain in mouse 3T3-L1 fibroblasts. J Biol Chem 1995; 270: 28797–28805.

    Article  CAS  Google Scholar 

  26. Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al. c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol 2001; 21: 3789–3806.

    Article  CAS  Google Scholar 

  27. Metcalf D, Lindeman GJ, Nicola NA . Analysis of hematopoiesis in max 41 transgenic mice that exhibit sustained elevations of blood granulocytes and monocytes. Blood 1995; 85: 2364–2370.

    CAS  PubMed  Google Scholar 

  28. Liu H, Keefer JR, Wang QF, Friedman AD . Reciprocal effects of C/EBPalpha and PKCdelta on JunB expression and monocytic differentiation depend upon the C/EBPalpha basic region. Blood 2003; 101: 3885–3892.

    Article  CAS  Google Scholar 

  29. Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ et al. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol 1997; 17: 7353–7361.

    Article  CAS  Google Scholar 

  30. Timchenko NA, Wilde M, Darlington GJ . C/EBPalpha regulates formation of S-phase-specific E2F–p107 complexes in livers of newborn mice. Mol Cell Biol 1999; 19: 2936–2945.

    Article  CAS  Google Scholar 

  31. Schaufele F, Enwright III JF, Wang X, Teoh C, Srihari R, Erickson R et al. CCAAT/enhancer binding protein alpha assembles essential cooperating factors in common subnuclear domains. Mol Endocrinol 2001; 15: 1665–1676.

    CAS  PubMed  Google Scholar 

  32. Timchenko N, Wilson DR, Taylor LR, Abdelsayed S, Wilde M, Sawadogo M et al. Autoregulation of the human C/EBP alpha gene by stimulation of upstream stimulatory factor binding. Mol Cell Biol 1995; 15: 1192–1202.

    Article  CAS  Google Scholar 

  33. Wang D, D'costa J, Civin CI, Friedman AD . C/EBP{alpha} directs monocytic commitment of primary myeloid progenitors. Blood 2006; 108: 1223–1229.

    Article  CAS  Google Scholar 

  34. Peer Zada AA, Geletu HM, Pulikkan JA, Müller CT, Reddy VA, Christopeit M et al. Proteomic analysis of acute promyelocytic leukemia: PML-RARalpha leads to decreased phosphorylation of OP18 at Ser63. Proteomics 2006 (in press).

Download references

Acknowledgements

We thank Dr Dirk Eick for providing Max expression plasmids, Dr Robert Eisenman for in vitro-translatable Max plasmid and Dr Alan Friedman for C/EBPα constructs. This work was financially supported by Grant F03/04 of the Deutsche-Jose-Carreras Leukemia Stiftung, Muenchen Germany to Peer Zada AA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Behre.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zada, A., Pulikkan, J., Bararia, D. et al. Proteomic discovery of Max as a novel interacting partner of C/EBPα: a Myc/Max/Mad link. Leukemia 20, 2137–2146 (2006). https://doi.org/10.1038/sj.leu.2404438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404438

Keywords

Search

Quick links